Some features of this site are not compatible with your browser. Install Opera Mini to better experience this site.

Notes from the Field

Waiting for Balloon Weather

September 5th, 2019 by Lina Tran

It’s 1:30 p.m. MT, and scientists and engineers at NASA’s Columbia Scientific Balloon Facility’s field site file into a meeting room. Time for the weather briefing. It’s standing room only — the biggest group of people I’ve seen yet in my week in Fort Sumner, New Mexico, population roughly 1,000. 

Daily weather briefings give rhythm to otherwise irregular days filled with launch attempts and instrument tests. Everyone is here to send balloons to the top of the sky; this daily meeting is where the decisions are made about whether we’ll try to do it the next morning. Since launch preparations begin around 2 a.m., this is when I learn whether I need to set my alarm for 12:30 a.m., six hours earlier than usual. 

Joy Ng/NASA Goddard

I’m a NASA writer, here with a team of scientists and engineers launching a solar scope called BITSE, which is testing a new way to see the Sun. BITSE — short for Balloon-borne Investigation of Temperature and Speed of Electrons in the corona — is a coronagraph, a kind of instrument that peers at the Sun’s dim atmosphere, the corona. BITSE will search for clues to how the solar wind, the stream of charged particles constantly blowing from the Sun, forms there. 

To me, it seems the most challenging thing about launching scientific balloons is the weather. It has to be just right in an entire chunk of sky: from the ground where the balloon launches, through the long stretch of blue where it ascends, to some 22 miles up where it floats. The balloon also needs consistent winds and fair skies along its projected flight path, which spans hundreds of miles and changes every day — depending on the weather, of course. 

“Basically, we can’t have wind at the surface when we lay out the balloon,” NASA mission manager Amy Canfield explained. “Then, when the balloon is inflated, we want light low-level winds, so the balloon ascends nice and calm, straight up. The weather can change just like” — she snapped — “that. If it changes, we have to scrub for the day.” 

Chelsey Ballarte/NASA Wallops

In Fort Sumner, a town in the desert 4,000 feet above sea level, late summer is hot, and the wind blows like a hair-dryer on low. Fort Sumner, which sits in the waist of New Mexico, is well-positioned for balloon launches. It’s remote, about an hour drive to the next town in any direction. Ascending balloons aren’t likely to stray too far north into the Rocky Mountains or too far south into Mexico.   

Chelsey Ballarte/NASA Wallops

BITSE passed its final test before launch, so now we’re just waiting for good weather. Waiting each day to learn whether BITSE will get a chance to fly that night is nerve-wracking. One of the scientists on the team likened our seemingly endless wait to life in the movie Groundhog Day. 

Several times, thunderstorms hundreds of miles away kept BITSE grounded. The air above a thunderstorm is cold, so when a balloon passes overhead, you get balloon droop. The helium inside shrinks from the chill and the balloon plunges — bad news for the team if that cuts the flight short or drops BITSE into a rough storm. 

Another time, had BITSE launched, the winds would have carried it on a grand tour of pretty much every population center between Fort Sumner and eastern Arizona, which safety regulations won’t permit. Often, gusting winds on the ground prevented smooth unrolling of the balloon. “If you feel wind blowing in your face, we’re not launching a balloon,” NASA mission operations manager Andy Hynous said.

The balloon program in Fort Sumner also takes advantage of what’s called the Turnaround — a stratospheric weather pattern that has the upper atmospheric winds blowing east to west the first half of the year and west to east in the second. Each fall balloon campaign takes place during the last weeks of east-to-west winds, just before the Turnaround. They send balloons west, into a part of the country where there are vast swathes of open, uninhabited land. 

The meteorologist working on the balloon campaign says most other meteorologists don’t care what happens in the stratosphere since it doesn’t touch our lives, far below. But for science instruments, the region offers the chance to show their mettle above most of Earth’s atmosphere. Scientists gain access to measurements and tests they can’t do on ground-based instruments. For BITSE, flying 22 miles up means studying the Sun’s dim atmosphere with much less interfering light than it would experience from the ground. The flight could also pave the way for an instrument descendant of BITSE’s to potentially do the same science from space one day. 

Joy Ng/NASA Goddard

After the weather update, NASA mission range safety officer Lauren Morgan presents her assessment of risks in the projected flight path. Besides good weather, BITSE also needs a thumbs-up from safety to fly. She considers a number of factors to ensure a safe flight. How many towns or cities would the balloon fly over? Which airports need to be alerted? Then, at the end of the flight, when BITSE parachutes down, she’ll consider whether the recovery team — which meets BITSE and brings the 6,000-pound load back to Fort Sumner — can safely drive into potential landing spots. She wants to avoid towns and cities, national parks and wilderness areas, public infrastructure like wind farms, and even the delicate habitats of endangered species. 

Day by day, the team will keep presenting new forecasts and projections, searching for a window just right for BITSE’s flight. Until then, the only thing for us to do is keep waiting for the winds to align. 

Photo by Amy Canfield, Mission Manager of the Balloon Program Office.

I’d like to welcome you back to the ballooning extraordinaire blog. As is normally the case, the weather in Ft. Sumner has been gracious enough for us to conduct our first successful flight of the campaign. Our first flight was conducted by the BOBCAT team. You can see in the photo (below) the payload gondola and our Mobile Launch Vehicle beautifully backlit by the New Mexican sunrise. The gondola is the structure that carries all the stuff that the science team needs to make their experiment work. The BOBCAT mission is a testbed demonstration for a cool, new type of cryogenic liquid containment system for balloon-borne telescopes. A lot of people might not know that cryogenic liquids are gases that have been cooled and compressed for so long that they actually turn into a liquid.

Our balloons at NASA use helium as a gas to rise from the ground, just like your run of the mill party balloons from the store, and they end up flying pretty good. But sometimes the science instruments we fly also use helium and other gases to protect their telescopes and detectors from moisture, particles in the air, and other stuff like that. Here’s where the “cool” part comes in. Sometimes the instruments need to be kept really, really cold. To do that, they use cryogenic helium and nitrogen liquids. At standard pressure, like here on the ground, liquid helium is 4 Kelvin. In Celsius, that’s -269 degrees. That’s pretty darn cold. The equipment to keep gases like helium that cold are usually pretty bulky and heavy. Dr. Alan Kogut, from the Goddard Space Flight Center, has figured out a way to make that equipment a lot lighter, which means that the instruments will be able to fly longer and higher then they would have.

Photo by Amy Canfield, Mission Manager of the Balloon Program Office.

In total, BOBCAT flew a total 4.5 hours at an altitude of over 125,000 feet. BOBCAT gracefully flew from Ft. Sumner, New Mexico all the way to just outside Sanders, Arizona. We couldn’t have asked for a better flight. Thanks again for checking out this update, and look for another real soon!

Nothing but Blue Skies Are All That I See

August 16th, 2019 by Andy Hynous, NASA Balloon Program Office


Well, now it’s next time. As the Balloon Program continues to gear up for its first launch of the Ft. Sumner Campaign, our science teams are diligently working towards getting their integrations completed so they can declare “Flight Ready.” What that really means is that they are working hard on making sure their payloads work! Once they’ve proven everything has been put together properly, we’ll attach them to the NASA equipment and then we’ll test everything again!

One of our upcoming science missions here is BITSE (that’s short for “Balloon-borne investigation of Temperature and Speed of Electrons in the corona”). In the words of one of the lead scientists, Dr. Jeff Newmark, “BITSE is a technology demonstration of a new chronograph—a new type of telescope to learn about the origin of solar winds.” That’s pretty impressive. 

Above you can see a picture of BITSE taking advantage of the clear New Mexican skies and tracking the Sun. BITSE uses a special device to make its own personal eclipse so it can take very high resolution pictures of the Sun’s corona. Now, even though the team’s test worked, they’re still looking through all the air from here on the ground, which causes a degree of interference. Once they’ve launched, there will only be a trace amount of air at the experiment’s float altitude of 120,000 feet, so BITSE should get a very clear picture.

Once BITSE has flown on a balloon, the science team will take everything they learned to help us understand how the Sun makes solar winds, which also helps us understand how the Sun works. We’re really excited to support the team and their experiment. Keep checking back for more updates from the field here at Ft. Sumner. Thanks!

Earth’s Mightiest Balloons

August 13th, 2019 by Andy Hynous, Mission Operations Manager, NASA Balloon Program Office


Did you know that NASA has a balloon program? At NASA, we not only launch balloons, we launch balloons that can carry almost 8,000 pounds to over 120,000 feet. That’s like taking two Ford Mustangs, fully loaded, and flying three times higher than a Boeing 777. When our balloons fly, they carry world class telescopes, cosmic ray detectors, and Earth science instruments. Many of NASA’s most successful satellites actually started out as balloon missions. I am always amazed when I realize how capable these platforms are.

The NASA balloon program conducts launches from the four corners of the world. Right now I’m in Ft. Sumner, New Mexico, the Land of Enchantment, where we’re gearing up for another campaign. Next, we’ll be taking flight over Antarctica. We also fly regularly from Wanaka, New Zealand and Esrange, Sweden. Keep checking back here for more updates! I’m going to put updates on our science missions, updates on life in the field, and more information on how we conduct our launches!

Until next time, I’ve attached a picture from last year’s Ft. Sumner Campaign, taken by yours truly, to help give a sense of scale for our balloons.