Posts Tagged ‘ice’

« Older Entries Newer Entries »

Greenland Aquifer Expedition: Gathered in Greenland, Prepared for Field Work

March 30th, 2015 by Olivia Miller, University of Utah
The team getting on our C-130 flight to Greenland.  From left to right: Clem, Josh, Lynn, Kip and Olivia.

The team getting on our C-130 flight to Greenland. From left to right: Clem, Josh, Lynn, Kip and Olivia.

We made it to Greenland! On Thursday, Kip and I flew from Salt Lake City, Lora flew from Denver, Clement flew from Seattle, Lynn flew from DC, Josh flew from Madison, and we all met up in Clifton Park, NY. Only one bag was lost and later found, and one flight canceled. Although we have all been working together to prepare for this work, I hadn’t met most of the team face to face. I finally got to put faces to the voices I had come to know from weekly teleconferences over the past six months. I was also lucky enough to have some family who lives outside Albany come visit and bring me a care package of goodies.

Lora reading on a cold flight over to Greenland.

Lora reading on a cold flight over to Greenland.

Olivia and Lynn excited to go to Greenland for the first time.

Olivia and Lynn excited to go to Greenland for the first time.

One of our first views as we flew into Greenland.

One of our first views as we flew into Greenland.

Friday was a long day. The Air National Guard picked us up from our hotel at 5 a.m. for our flight aboard a C-130 to Kangerlussuaq. We piled into the belly of the plane, sitting on webbing seats and peering out tiny windows as the North American continent slowly transitioned from forested land to tundra to open ocean to sea ice and finally to the glacially carved fjords and ice covered mountains of Greenland. As we approached our destination, the flight crew even let us go up into the cockpit. They had an impressive view!

A view of the town of Kangerlussuaq.

A view of the town of Kangerlussuaq.

The Kangerlussuaq International Science Support building.  Our home for the next few days.

The Kangerlussuaq International Science Support building. Our home for the next few days.

Upon arrival, we were taken to the Kangerlussuaq International Science Support (KISS) base, where we stayed last night. After settling into our rooms we went through training on snowmobiles and how all of our communication devices work. Much of our field work will involve snowmobiles. We have personal locator beacons in case of an emergency and all kinds of radios to talk with helicopter pilots and each other, as well as several satellite phones. We also got to see all 80 boxes of science equipment that had been loaded onto pallets for us. We have so much equipment because we are conducting a variety of different kinds of studies this year (hydrology, ice coring, seismic, radar, and magnetic resonance) and each study requires a lot of different equipment.

Today, Saturday, we prepared for our last airplane flight to Kulusuk. The flight was scheduled for 10:15 so we happily got to sleep in a bit and catch up on some much needed sleep. For breakfast we headed to the cafeteria in the airport and made a quick stop at the grocery store to pick up some perishable food to bring into the field with us. Our flight was delayed a bit so we went to lunch at the Pizza-Thai–Grill restaurant in town.

Unfortunately we just found out that our flight been pushed back to tomorrow, so for now, we get to catch up on some work and spend a little time exploring the town.

Greenland Aquifer Expedition: We’re off again!

March 24th, 2015 by Lora Koenig

Hello and welcome to the third installment of the Greenland Aquifer Team blog. We are back at it again this year to study the water hidden below the surface of the Greenland Ice Sheet. For background, if you have a lot of reading time, you can check out all of the blog posts (including those from previous years) here, or for a quick synopses check out the press release on our 2014 science papers resulting from our work here.

This season should be an exciting one. The National Science Foundation (NSF) and NASA are funding us to do a lot more work this season to better understand how much water is being stored in the Greenland Ice Sheet and what that ultimately means for all of you reading this. Note: If you are reading this while on spring break from a nice chair on the beach you should pay attention because over the next few decades the melt from Greenland will raise global sea levels. The only remaining questions are how much and how fast? Our team will play a small roll in answering these science questions by drilling, pounding, radiating, and penetrating into the aquifer in southeast Greenland.

Over the next five to six weeks, this blog will cover not only our science but also our adventures conducting science in one of the harshest regions on Earth. This year will be BIGGER. More measurements, more people, more time in the field, and more blogs. (More blogs assuming the satellite phone data link works. After all, this is field work so we never know.) Everyone on our team will contribute to the blogs so I will introduce them here quickly and you will hear more about each of them and their work in the weeks to come. Enjoy the blogs! We take off for Greenland on March 27, so look for our next installment about our trip from New York to Kangerlussuaq, Greenland, soon.

Greenland Aquifer Team 2015

GreenlandAquifer_2015_0323_1

Top row left to right: Josh Goetz, Lead driller from the Ice Drilling Design and Operations group at the University of Wisconsin-Madison; Clément Miège, Post-doctoral student, radar lead, and Greenland Aquifer team veteran from the University of Utah; Kip Solomon, Professor and ground water hydrology lead from the University of Utah; and Lynn Montgomery, Undergraduate student and seismic team member from the University of Maryland.

Bottom row left to right: Anatoly Legtchenko, Director of research and electromagnetic resonance lead from the Laboratoire d’étude des Transferts en Hydrologie et Environnement (Laboratory of Hydrology and Environment); Lora Koenig, Research scientist, ice core lead and Greenland Aquifer team veteran from the National Snow and Ice Data Center at the University of Colorado; Olivia Miller, Graduate student and ground water hydrology team from the University of Utah; and Nick Schmerr, Assistant professor and seismic lead from the University of Maryland.

 

NASA in Alaska 2014: Charting MABEL’s course

August 1st, 2014 by Kate Ramsayer

For more than 65 hours this month, NASA’s high-altitude ER-2 aircraft flew from Fairbanks over melting sea ice, glaciers, forests, permafrost, lakes, volcanoes and more. It zigged and zagged over the Beaufort Sea, and soared straight over the Bagley Ice Field.

The goal: to use a laser altimeter called MABEL to take elevation measurements over specific points and paths of land, sea and ice. To hit these marks, scientists and pilots painstakingly designed and refined flight routes. And then they adjusted those routes again to capture cloud-free views – a tricky proposition in a giant state with mountains creating complex weather systems.

A camera on the MABEL instrument captured shots of cracked sea ice, dotted with melt ponds, during a flight to the North Pole. (Credit: NASA)

A camera on the MABEL instrument captured pictures of cracked sea ice, dotted with melt ponds, during a flight to the North Pole. (Credit: NASA)

“We have targets to the north, targets to the south, and mountain ranges blocking both,” said Kelly Brunt, a research scientist at NASA’s Goddard Space Flight Center who was MABEL’s science flight planner.

Scientists studying forests, glaciers, water and more are using MABEL data to develop software programs for the upcoming ICESat-2 satellite mission, and sent Brunt lists of what they would like to be included in the Alaska campaign.

“We get everybody’s input, and start to put it on a map,” she said. She drafts routes with targets in similar weather patterns, so that if one is clear the others are likely to be as well. However, often targets are removed from a route, based on the weather assessment from the morning of the flight. During the deployment, routes are also constructed to target specific sites that were missed during previous flights for either weather or aircraft reasons. Lots of the work goes into straightening the flight line, Brunt said, since when the aircraft banks at 65,000 feet, the laser instruments swivel off their ground track and the scientists can lose miles worth of measurements.

The MABEL campaign's July 24 flight route covered glaciers, ice fields, forests, the Gulf of Alaska and more. (Credit: NASA)

The MABEL campaign’s July 24 flight route covered glaciers, ice fields, forests, the Gulf of Alaska and more. (Credit: NASA)

One flight to measure sea ice was pretty direct – it took the pilot straight to the North Pole over one longitude line, circled around and came back on another. A second route involved a zig-zag pattern over the Arctic. But both routes were designed to capture a range of summer ice conditions, including melt ponds, large stretches of open water, and small openings in the sea ice, known as leads.

Flights over Alaska itself were often mapped to pass over glaciers, lakes, ocean moorings or even tide gauges that others have measured before, to compare with the data MABEL collected. Students from the Juneau Icefield Research Program (JIRP) assisted MABEL researchers by providing ground-based GPS validation for a mission that flew over the upper Taku Glacier, close to a JIRP camp. And the MABEL team collaborated with NASA Goddard scientists flying a different instrument, called Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager – the two campaigns flew some of the same paths over interior Alaskan forests.

NASA ER-2 pilot Denis Steele, in a pressurized flight suit, before a July 16 flight over Alaska's glaciers. (Credit: Kate Ramsayer/NASA)

NASA ER-2 pilot Denis Steele, in a pressurized flight suit, before a July 16 flight over Alaska’s glaciers. (Credit: Kate Ramsayer/NASA)

From Fairbanks, Brunt worked with the campaign’s two pilots, Tim Williams and Denis Steele, to ensure the routes would work with the ER-2’s capabilities; and with weather forecasters to determine where to best focus efforts the following day.

In all, the campaign flew 7 flights out of Fairbanks. And today, the ER-2 – with MABEL aboard – flies back to California, collecting even more data about the elevation of the landscape along the way.

NASA in Alaska 2014: MABEL readied to snap photos from above

July 15th, 2014 by Kate Ramsayer

Clouds blanketed much of MABEL’s potential flight routes over the Alaskan Arctic or southern glaciers on Monday, so the ER-2 aircraft stayed in the hangar at Fort Wainwright in Fairbanks, Alaska.

But the MABEL team was busy. They took advantage of a day on the ground by improving the instrument’s new camera. The goal is to take more images like the one below, to help scientists interpret the data from the airborne lidar instrument.

As the ER-2 aircraft traveled from Palmdale, California, to Fairbanks, Alaska, the camera on MABEL took this shot of wind turbines near Bakersfield, California. (Credit: NASA)

As the ER-2 aircraft traveled from Palmdale, California, to Fairbanks, Alaska, the camera on MABEL took this shot of wind turbines near Bakersfield, California. (Credit: NASA)

It’s the first week of the summer 2014 campaign for MABEL, or the Multiple Altimeter Beam Experimental Lidar, the ICESat-2 satellite’s airborne test instrument. MABEL measures the height of Earth below using lasers and photon-counting devices. This year, the team is using a new camera system to take snapshots of the land, ice and water in parallel with MABEL’s measurements.

The MABEL instrument is nestled snug in the nose cone of the high-altitude ER-2, which has a circular window in the base where the laser and the camera view the ground. To get access to MABEL and the camera, the crew propped up the nose and wheeled it away from the aircraft.

The ER-2 crew rolls the aircraft's nose -- containing MABEL -- away from its body, so engineers could work on the instrument. (Credit: Kate Ramsayer)

The ER-2 crew rolls the aircraft’s nose — containing MABEL — away from its body, so engineers could work on the instrument. (Credit: Kate Ramsayer/NASA)

The team then carefully slid the instrument out onto a cart, so that MABEL’s on-site engineer and programmer – Eugenia DeMarco and Dan Reed – could work on the camera and ensure the connections were sound.

MABEL engineer Eugenia DeMarco and programmer Dan Reed work on improving the new camera system for the instrument. (Credit: Kate Ramsayer/NASA)

MABEL engineer Eugenia DeMarco and programmer Dan Reed work on improving the new camera system for the instrument. (Credit: Kate Ramsayer/NASA)

When the camera was set to document the terrain from 65,000 feet, the team slid MABEL back to its spot and wheeled the aircraft’s nose back to the rest of its body. They connected the instrument to the plane’s electronics, sealed the plane back up, and are ready to go whenever the weather cooperates.

Luis Rios, with NASA's ER-2 crew, checks the connections between the MABEL instrument and the aircraft. (Credit: Kate Ramsayer/NASA)

Luis Rios, with NASA’s ER-2 crew, checks the connections between the MABEL instrument and the aircraft. (Credit: Kate Ramsayer/NASA)

 

NASA in Alaska 2014: MABEL: Welcome to Fairbanks!

July 14th, 2014 by Kate Ramsayer

Very few people get to fly 65,000 feet above Alaska’s glaciers. And even fewer get to fly over ones they share a name with. But on Friday, as pilot Denis Steele flew NASA’s ER-2 aircraft from Palmdale, California, to Fairbanks, Alaska, he snapped a picture of the scenery below – including Steele Glacier in the southwestern corner of Canada’s Yukon territory.

From NASA's ER-2 aircraft, pilot Denis Steele saw glaciers in southern Alaska and Canada -- including the Steele Glacier, in the center of the image, and the Donjek Glacier (lower right). (Credit: Denis Steele)

From NASA’s ER-2 aircraft, pilot Denis Steele saw glaciers in southern Alaska and Canada — including the Steele Glacier, the horizontal feature in the center of the image, and the Donjek Glacier (lower right). (Credit: Denis Steele)

Steele and the ER-2 team, along with NASA scientists, engineers and others, are here in Fairbanks to fly a laser altimeter – MABEL, or Multiple Altimeter Beam Experimental Lidar – over melting summer sea ice, glaciers and more. It’s a campaign to see what these polar regions will look like with data from ICESat-2, once the satellite launches and starts collecting data about the height of Earth below. Gathering information now allows scientists to get a head start in developing the computer programs scientists will need to analyze ICESat-2’s raw data.

MABEL and other lidar instruments are flying on the ER-2, which provides a high-altitude perspective. In the next three weeks, the plan is to cover melting sea ice, glaciers, vegetation, lakes, and more.

Steele wasn’t the only one looking out of the plane windows on flights north. Kelly Brunt, a research scientist at NASA’s Goddard Space Flight Center, spotted a wildfire in Eastern Washington. The fire, burning in steep terrain, resembled an erupting volcano.

A wildfire burns in Washington, just east of the Cascades. (Credit: Kelly Brunt)

A wildfire burns in Washington, just east of the Cascades. (Credit: Kelly Brunt)

Over the weekend, the team settled into Fairbanks and a hangar at the U.S. Army’s Fort Wainwright, downloading data from the transit flight and ensuring the instruments are ready to fly when the weather allows. Cloudy skies over key sites means the ER-2 won’t fly today (Monday), but the team will check the weather tonight and see if it clears enough to fly the first science flight on Tuesday.

Want to follow MABEL and the ER-2? Check back here, and also check NASA’s flight tracker: http://airbornescience.nasa.gov/tracker/

Yep, we're in Alaska! A moose along a road east of Fairbanks. I'll call her Mabel. (Credit: Kate Ramsayer)

Yep, we’re in Alaska! A moose along a road east of Fairbanks. I’ll call her Mabel. (Credit: Kate Ramsayer)

Notes from the Field