Alex Haughton is a graduate student in the Astrophysical and Planetary Sciences department at University of Colorado Boulder studying ultraviolet instrumentation with sounding rockets. His team has traveled to Equatorial Launch Australia’s Arnhem Space Center near Nhulunbuy, Australia to launch the Dual-channel Extreme Ultraviolet Continuum Experiment (DEUCE) Sounding Rocket and observe the stars Alpha Centauri A & B in extreme ultraviolet wavelengths.
The light of a waxing gibbous illuminates the eucalyptus forests of East Arnhem Land. A mild breeze rustles the trees, and clouds pass overhead, first obscuring and then revealing Alpha Centauri A & B, our targets. A Hunstman spider we named “Jeremy,” recently displaced from its position guarding the detonator switch, scuttles along the ground near where the DEUCE payload stands vertical, perhaps moments away from being launched into space.
30,000 feet above this scene, a weather balloon floats, taking wind measurements and beaming them back down to the Range Control Center. The countdown is approaching T-minus two minutes, and range safety officer Brittany Empson concentrates on the wind readings. While the overall velocity of the winds has been low enough to continue, the variability of the winds this evening has been too high to launch – the tail end of a storm over Indonesia just clipping the Gove Peninsula where the launch range stands. Unless the variability goes down, Brittany will have to call for a hold, resetting the countdown to T-minus three minutes. Five seconds before she must make the call, the variability number drops into the green.
“RSO Check Item 140,” she announces. She continues watching the data come in – if it goes red anytime in the next two minutes, the count must be reset. Next to her, campaign manager Max King begins polling various people to “Report GO Status.” There’s a rhythm to it, exactly as you imagine from the movies:
“ACS?”
“Go.”
“CUF?”
“Go.”
“NFORSe?”
“Go.”
“PTM?”
“Go.”
And so on and so forth. A couple hundred meters away from the Range Control Center in the Command Uplink Facility (CUF), where the science team sits, chills run down my spine, and I do my best not to get emotional. Our team has been building to this moment for at least the past year, and more personally this night represents a dream come true for me. I’ve watched the two previous payloads launch, and while both of them were awesome, this time I’m in the room, and I have things to do. It’s real.
Dr. Brian Fleming, the principal investigator (the one who proposed the project and won funding to make it happen) announces “Go” for us. Also in the room are Emily Witt, the senior graduate student on the launch, Alex Sico, our technician, and Chris “Hox” Hoxworth, who runs the uplink equipment in the CUF and whose calming voice has guided many a graduate student through this stressful situation over the year. With 30 seconds left in the countdown, we scurry outside the CUF; our next responsibilities are one minute after launch.
We can’t see the rocket from our vantage point, as it is hidden behind trees, but we know in which direction it lies. The speakers on the range count out the last ten seconds, and the night seems to hold its breath in anticipation: “Ten, nine, eight, seven, six, five, four, three, two, one…”
The light comes first, a bright flare revealing the trees and the trucks, trailers and radar dishes, and then just as the top of the payload crests the trees the resounding wall of sound crashes into our ears.
BOOM.
The rocket flies up, up, and away, the first stage burning through its fuel in a mere six seconds before silence engulfs the night again and only an echo, perhaps real, perhaps imaginary, of that first guttural roar is left bouncing through my head. Emily and Brian quickly dash back in to get to their stations, but I linger a few seconds longer and catch the second stage of the rocket igniting before following them.
I check the screen I am assigned to watch: the numbers look not good but great – the temperatures and voltages are as they should be, even the vacuum gauge is reading surprisingly low. By 77 seconds into the flight the vacuum gauge finally starts increasing slightly before the shutter door opens and it drops back to zero. At this point the payload has separated from the two rocket motors and the Attitude Control System (ACS) begins pointing us towards our star. It appears on the touchscreen Emily uses to steer, and she leans into her screen, eager to move it to the correct place. She can’t quite yet, though: She has to wait for the ACS engineer, Brittany Barrett, to give her the go ahead. Excruciating seconds pass.
“ACS on target and ready for uplinks,” reports Ms. Barrett.
Emily quickly begins steering the telescope’s slit to align with the star, fingers flying over the screen: Target, Set, Send. Data is now coming in on the detector screen, and Brian begins reading out count numbers: more is better.
“132… 214… 189… 488… 603… 488… 603,” he reports. On the screen Emily has the star roughly aligned with the slit, but our pointing is a bit bouncy, so she is consistently nudging it back into line. Finally, a few minutes in, it largely settles where it is supposed to. On the data screen we watch as photons hit the detector, concentrating on the area where there should be spectral lines, the indication that we are getting data from the star and that the data will have interesting science results.
“There!” exclaims Brian, his finger indicating a region with more counts. “That’s a line. We have data!” There is still some tension in the room: Emily continues to nudge the star to get the best results, and Brian continues hunting for other obvious lines, but relief is starting to set in. We are getting what we came here for.
Seven minutes and six seconds after takeoff the shutter door closes. The payload reached its apogee of 258 kilometers and is falling back down to Earth. It will launch a parachute and hopefully land gently (some landings are gentler than others). We leave the CUF to head for the RCC, handshakes, hugs, and general celebration. Somewhere, Jeremy the Hunstman spider crawls away, seeking a hunting location unoccupied by space goers. The work isn’t done, but the scary part is. Success.