Nyamuragira Volcano (also known as Nyamulagira), in eastern Democratic Republic of the Congo, ranks among Africa’s most active volcanoes. After a month of unrest, Nyamuragira erupted on November 27, 2006, and scientists at the nearby Goma Volcano Observatory were concerned that the local population could be in danger. |
|||
They had good reason to worry; in January 2002, neighboring Nyiragongo Volcano had erupted, sending a river of molten rock through the town of Goma and into nearby Lake Kivu. According to some estimates, that disaster had killed more than a hundred people and displaced a quarter million. |
|||
At the onset of the November 2006 eruption, volcanologists watching the distant glow in the nighttime sky knew that Nyamuragira produced fast-flowing lava. If it flowed very far, it might reach the nearby town of Sake, perhaps mimicking the 2002 nightmare. Years of civil war, however, had left the country with lingering strife and few disaster-response resources. To reach the volcano, scientists would have had to risk not just lava but sniper fire. |
|||
On December 1, 2006, the international science community received an appeal for assistance from the scientists at the Goma Observatory asking for any satellite imagery that could help them safely monitor the situation. One of the scientists who fielded this appeal was Ashley Davies, a research scientist at NASA’s Jet Propulsion Laboratory (JPL). Davies is part of NASA’s Volcano Sensor Web, an experimental artificial intelligence (AI) project that links orbiting and ground-based volcanic sensors with NASA’s Earth Observing-1 satellite. When the satellite receives an alert of a volcanic trouble spot, it can change its data collection and transmission plans accordingly, without waiting for a human command. The Sensor Web is an offshoot of the lab’s Autonomous Sciencecraft Experiment, a broader effort to test advanced software and AI technology that could network space exploration assets—satellites, orbiters, and rovers—and make them more self-directed. In 2004, the Earth Observing-1 (EO-1) satellite had first demonstrated its abilities by detecting and self-directing observations of an eruption of remote Erebus Volcano in Antarctica and delivering data to scientists within hours. “It worked perfectly,” Davies recalls, “although human lives weren’t at stake in that situation.” |
|||
In contrast, when Nyamuragira erupted in late 2006, Davies understood that human lives could be in jeopardy. “I immediately picked up the phone and started to do the human thing and call the person who manually handles spacecraft ops for EO-1 to re-task it,” he says. “And then I noticed this email from the sensor web system. The planning software at JPL had picked up an alert originating from the Volcanic Ash Advisory Center in Toulouse [France], and had already re-tasked the spacecraft to get the data.” A step ahead of him, the sensor web had given EO-1 new orders to observe Nyamuragira Volcano at the next available opportunity, on December 4, 2006. The system transmitted a preview of the data to JPL on December 4, showing the intense thermal emission characteristic of ongoing volcanic activity. Complete high-resolution images and thermal data pinpointing the location of vent and lava flows arrived on December 5. By this time, EO-1 had re-tasked itself to obtain more data on December 7. |
|||
The December 4 data led scientists to revise their prediction of where the lava would flow. Based on the best estimate of the vent location from staff at the Goma Observatory, models run by geologist Paolo Papale and his colleagues at the L’Istituto Nazionale di Geofisica e Volcanologia (INGV) in Italy initially predicted that lava would flow both to the east and to the southwest, toward the town of Sake. The estimate for the vent location, however, was off by about 2 kilometers. |
|||
Two kilometers may not seem like much, but given fast-moving lava and hilly terrain, even a distance that small matters. When EO-1 established a different lava vent position, the modelers revised their predictions, calculating that all of the lava would flow southwest, increasing the probability that it would cut across a major road and reach Sake. “If the eruption had been bigger, it could have been catastrophic for Sake. In fact, the lava never got that far,” Davies says, “but this was a pretty quick data delivery, and it enabled the ‘boots on the ground’ to plan accordingly. I don’t know if this actually saved lives, but it definitely allowed re-targeting of resources away from the eastern side of the volcano.” |
|||