How Plants Can Change Our Climate

  Page 1Page 3

“Plant growth can have a considerable effect on the climate,” says Wolfgang Buermann, a geographer at Boston University. He explains that there are several ways in which plants can alter the temperature of the Earth’s atmosphere. Through the process of photosynthesis, plants use energy from the sun to draw down carbon dioxide from the atmosphere and then use it to create the carbohydrates they need to grow. Since carbon dioxide is one of the most abundant greenhouse gases, the removal of the gas from the atmosphere may temper the warming of our planet as a whole.

Plants also cool the landscape directly through the process known as transpiration. When the surrounding atmosphere heats up, plants will often release excess water into the air from their leaves. By releasing evaporated water, plants cool themselves and the surrounding environment. “It’s like sweating. When you sweat you cool the surface of your skin,” says Buermann. Over a forest canopy or a vast expanse of grassland, large amounts of transpiration can markedly increase water vapor in the atmosphere, causing more precipitation and cloud cover in an area. The additional cloud cover often reinforces the cooling by blocking sunlight.

  Diagram of Plant Transpiration

Because of these processes, many researchers believe plants may have a sizable impact on global climate in the future. As humans continue to generate carbon dioxide and other greenhouse gases, the Earth’s surface will likely warm at a faster rate than it has in a thousand years. According to the Intergovernmental Panel on Climate Change (IPCC), the Earth is likely to warm another 1.4 degrees to 5.8 degrees by the end of this century (IPCC 2001). Needless to say, such big changes in the climate would likely alter vegetation growth all over the world. Many researchers hypothesize that the changes in vegetation could either serve to worsen or put a damper on global warming. If, for instance, the increased temperature and carbon dioxide levels of the Earth cause vegetation worldwide to flourish, plants could draw down more carbon dioxide and thus reduce the impact of the greenhouse effect. If, on the other hand, global warming causes widespread drought, then the loss of vegetation may result in even higher surface temperatures.

To model and then understand the ways in which vegetation interacts with the climate, scientists will need to maintain an accurate record of the Earth’s vegetation well into the future. For this purpose, for roughly the past twenty years, researchers have employed multi-spectral remote sensing satellite instruments such as the Advanced Very High Resolution Radiometer (AVHRR) instrument aboard NOAA’s polar-orbiting satellites. As is the case with most remote sensing satellite instruments, AVHRR houses a number of separate types of light detectors, which acquire images of different bands (colors) of light reflected off of or emitted from the Earth’s surface and atmosphere, including blue, green, red, near-infrared, and even thermal infrared energy. From these satellite data, scientists can produce images of the Earth showing a single band of light or a combination of bands. With a resolution on the order of 1 square kilometer per pixel and up, AVHRR images are not well suited for viewing details of the planet’s surface any smaller than a farm, but they are extremely useful for mapping and monitoring vegetation on a global scale.


As plants ‘breathe’ and ‘perspire’ they help cool the atmosphere. Plants consume carbon dioxide—a significant greenhouse gas—in the process of photosynthesis. The reduction of carbon dioxide in the atmosphere has an indirect cooling effect. Plants also cool the atmosphere because they release water vapor when they get hot, a process similar to sweating. The diagram at left shows the microscopic structure of a leaf, and the processes of photosynthesis and transpiration. (Illustration courtesy P.J. Sellers et al.)

To learn more about the role of plants in the hydrosphere, read The Water Cycle. To learn more about plants’ consumption of carbon dioxide, read The Carbon Cycle.

Graph of Chlorophyll Absorption

The amount and extent of vegetation, however, cannot be discerned from the raw satellite images alone. To extract information about vegetation from the satellite data, scientists must manipulate the images. The preferred method for years has been the normalized difference vegetation index (NDVI). Developed in 1979 by a NASA researcher, NDVI is a measure of the green, leafy vegetation density or the lushness of vegetation. [For more details see Measuring Vegetation (NDVI & EVI)] NDVI is produced by observing the discrepancy between the visible and near-infrared sunlight that reflects off of vegetation. As can be seen through a prism, many different wavelengths make up the spectrum of sunlight. The pigment in plant leaves, chlorophyll, strongly absorbs the visible light in the solar spectrum for use in photosynthesis. The cell structure of the leaves, on the other hand, strongly reflects near-infrared solar light. By measuring the difference between these two wavelengths of light in remote sensing data, scientists can get a relative measure of vegetation. If the difference is large, an area is likely to be densely vegetated, and if the value is small, the vegetation is likely to be sparse.

next A New Way to View Vegetation
back Seeing Leaves in a New Light

  The graph at left shows how efficiently the chlorophyll pigments in plants absorb light. The difference in absorption between visible and near-infrared light (longer than 0.7 µm) forms the basis for the measurement of Normalized Difference Vegetation Index. (Graph courtesy Compton Tucker, NASA GSFC)