Notes from the Field

Return to Utqiagvik

August 31st, 2022 by Fred Huemmrich

We returned to Utqiagvik, the northernmost town in the U.S., for fieldwork for our project “clarifying linkages between canopy SIF and physiological function for high latitude vegetation.” We want to learn how to use the information from the light emitted by tundra plants as solar induced fluorescence (SIF) to describe the functioning of the tundra ecosystem. In the process of photosynthesis, plants not only absorb light, but they also emit light called chlorophyll fluorescence. The fluoresced light provides information about the rate of photosynthesis and about plants responses to stress. Although not much light is emitted by fluorescence, we can detect it with sensitive instruments, and even from space with instruments on satellites. We are making measurements on the ground so that we can understand how the diverse tundra vegetation is responding to environmental conditions, and how to make the best use of satellite images of this region.

This project is part of the NASA Terrestrial Ecology program’s Arctic-Boreal Vulnerability Experiment (ABoVE), a large-scale field study in Alaska and western Canada, whose overall goals are to make use of NASA technology to gain a better understanding of ecosystems at high latitudes, their responses to environmental change, and the effects of those changes.

Our field team …

Fred Huemmrich and Petya Campbell from University of Maryland Baltimore County on the left and students Brenda Almanza and Marianna Mora from University of Texas El Paso with Fred on the right.

In June, which is early spring for the tundra, we set up automated instruments at two existing tundra sites. Our instruments include the FLoX (Fluorescence Box), which measures the reflected light and solar induced chlorophyll fluorescence of patches of the tundra, and the monitoring PAM (MoniPAM), whose probes illuminate small patches of leaves or moss with controlled pulses of light to measure fluorescence and photosynthetic processes at the leaf level. These instruments automatically measured the fluorescence throughout the day to observe effects of varying light levels and temperatures and through the course of the growing season as the tundra plants grow. The FLoX gives us measurements of patches of ground that are like the data we can get from satellites, although measuring a very much smaller area than the satellite sees.

We returned in August to measure the tundra during its peak of summer growth.

It is a bit of a stroll out to our sites. The path has boardwalks and plastic matting laid down to protect the tundra from serious erosion from people’s feet.

Along the way there were flowers, birds, and animals to see. There were a lot of lemmings this year. When we startled these small gerbil-like animals, they would quickly run along their trails through the tundra and disappear into holes in the ground. The lemmings need to be quick because we also saw several snowy owls and a couple of arctic foxes. The owls and foxes eat the lemmings, and these predators’ populations were high because of the number of lemmings. There were also Lapland longspurs and snow buntings, sparrow sized birds that breed in the Arctic, popping around our sites.

Tundra plants: coltsfoot, Arctic poppy, and dwarf willow.

We visited our automated sensors at the Department of Energy Next Generation Ecosystem Experiment (NGEE) Arctic flux tower site.

Our FLoX on the left and the MoniPAM probes attached to the tripod legs on the right.

The NGEE flux tower.

This image shows the three main instruments on the NGEE flux tower. On the left is an infrared gas analyzer, which measures the concentration of CO2 and water vapor in the air. On the right is an instrument to measure the methane concentration. In the center is a sonic anemometer. The sonic anemometer very accurately and rapidly measures the upward and downward wind speed. The vertical wind speed  information combined with the measurements of CO2, water vapor, and methane concentrations from the other sensors can be used to calculate their transport into and out of the ecosystem. For example, CO2 taken up by the ecosystem is a measure of the rate of photosynthesis.

We visited our sites to check on our automated sensors to make sure they are running and collecting and storing data.

We put down pads to protect the tundra when we walk out to maintain the instruments.

Checking the vegetation samples measured by the MoniPAMs. We clean the probes, make sure the plant samples they are viewing are not damaged, and collect ‘dark measurements’ where we cover the samples with a towel to make measurements when the plant is without sunlight.

Checking the FLoX to make sure the instrument is still operating correctly.

While at the sites, we also make additional measurements to add to the data from the automated sensors.

Measuring the chlorophyll content of the tiny tundra leaves.

Measuring the reflectance and fluorescence in the area around the FLoX sensor using portable field spectrometers.

Our second site was at the National Science Foundation’s National Ecological Observatory Network (NEON) flux tower.

In the picture on the right, the thin pole near the top of the tower extending out to the left holds the optical fibers from our FLoX sensor.

Our team, Marianna, Petya, and Brenda, wearing climbing gear and hard hats, prepare to climb the tower to work on our FLoX sensor.

We also measured a number of plots with different types of vegetation cover within this area of high-centered polygon tundra near the lab building.

Measuring the SIF emitted from the tundra at multiple view angles for different types of vegetation cover. The satellites that can observe SIF often view the landscape at different angles and we want to understand how the view angles affect their measurements.

When the weather turned bad (rainy and in the 30s Fahrenheit) we worked in the lab measuring photosynthesis, fluorescence spectra, and chlorophyll content for plant samples from our study plots.

Petya measuring photosynthesis to examine how it varies under different light levels and Brenda measuring fluorescence spectra.

As a side project we located the transect I worked on 20 years ago and remeasured it. Even after all of these years I was surprised that I didn’t have any problem finding the start of the transect, and there was still a wooden stake there. But we couldn’t locate a marker for the far end, so we had to use GPS to locate it. It pleased me to see that the path we had worn by walking on the tundra 20 years ago had healed and I couldn’t see any sign of it now.

We put out a tape measure and measured the reflectance of every meter along the 100-meter transect, just like we did back in 2002. We will analyze the data to see what kinds of changes have occurred over 20 years.
 

Another day we visited the International Tundra Experiment (ITEX) site. The site was established back in the 1990s for the long-term monitoring of plant growth.

The open topped chambers passively warm the plots to see potential effects of climate change.

Regular measurements of reflectance, soil moisture, water table height, and the depth of permafrost thaw (using the high-tech method of pushing a rod into the ground until it hits the frozen layer) are made throughout the growing season.

Left, collecting measurements along a transect at ITEX; middle, making the permafrost thaw depth measurement by pushing a rod into the ground; right, measuring the spectral reflectance of the tundra plots.

At the end of our field campaign, we removed all of our equipment from the field.

To haul the equipment down the narrow trail, we used this two-wheeled barrow.

While working in Utqiagvik, we lived in dormitories. It reminded me of living in my freshman dorm in college.

The view out my dorm window was of the Air Force Long Range Radar Site, a little different than my freshman dorm (left picture). The high school football team was practicing right next door to my dorm. The field is literally right on the shore of the Arctic Ocean.

We live and work outside of Utqiagvik on the grounds of the former Naval Arctic Research Lab (NARL). NARL was founded 75 years ago, during the height of the Cold War. NARL was part of a tradition of research in Utqiagvik. The facility is now managed by the Ukpeaġvik Iñupiat Corporation (UIC), the native-owned corporation that manages the Barrow Arctic Research Center (BASC). Some of the buildings left behind by NARL are now used by BASC and Ilisagvik College, the only tribally controlled college in Alaska and the northernmost accredited community college in the U.S.

UIC Science logo. Ukpeaġvik means “place to hunt snowy owls”

Some of the old NARL Quonset huts.

The main building of Ilisagvik College. Note the whale skull in front of the building.

 
The modern lab building that we work out of.

Because of the permafrost, utilities like water and sewage run in utilidors above ground across the NARL campus.

Because nothing is paved and it is often wet, everyone wears rubber boots outside, and you always take your boots off when you come in.

There are no roads to Utqiagvik. Almost everything has to come in by air.

The Alaska Air terminal in Utqiagvik.

Heavy or bulky stuff that is not shipped by air freight comes up once a year on a barge.

The annual barge arrived while we were up there. There’s no dock to unload on (the sea ice would probably destroy one) so they use a landing craft to bring the stuff ashore.

The most exciting animal sighting was on my last day when we saw several Beluga whales swimming near shore near the place where they had been bringing the cargo from the barge ashore.

In a lot of ways Utqiagvik is like any other town.

There’s a modern supermarket, the Stuaqpak (which means “big store” in Iñupiaq), a hardware store, pizza places, Chinese restaurant, and gas station. But then there are twists. All the streets are gravel, except for the one street that runs in front of the airport. The auto parts store also sells whaling equipment. Gas comes up on the barge once a year, so the price of gas stays the same until they start tapping the new shipment. When the restaurant is open, you can look out on the Arctic Ocean while you have a slice at Arctic Pizza.

Also in town is the Iñupiat Heritage Center, which has exhibits on the people and their culture.

In front of the building is a bowhead whale skull about the size of a VW Beetle. There is a picture of a field sewing kit and sinew used for thread (upper-right). One thing I learned at the center is the critical importance of sewing for survival in the Arctic. The quality and maintenance of clothes is a matter of life and death in this harsh climate (middle-left picture). The ability to sew is also important for making the coverings for skin boats, which are used to hunt whales and other sea life. The middle right picture is a sled made out of the baleen from the whales. In the lobby is a life-sized model of a young bowhead whale (lower pictures). You can get a sense of its size compared to Brenda.

2 Responses to “Return to Utqiagvik”

  1. notocord says:

    Tһis website was… һow do you say it? Relevant!!
    Finally I have found something which helped me. Appreciate it!

  2. trays says:

    Нi there! I simply would like to give you a huge thumbs up for the grеat information you’ᴠe got right here on thіs
    post. Ӏ am returning to your website for more soon.