Notes from the Field

It Takes A Village

March 28th, 2013 by Maria-Jose Viñas

By Lora Koenig (as told to María José Viñas)

Kulusuk in East Greenland. Image courtesy of Tom Olliver (Flickr).

Kulusuk in East Greenland. Image courtesy of Tom Olliver (Flickr).

All the members of our team are now in Kulusuk, Greenland. We’re quite isolated in this tiny village but we have a whole team behind us, making sure we get our stuff on time. The people in town are helping us a lot, too (hence the title of this blog post), letting us drive their vehicles or use their buildings to organize our gear.

We have almost all our equipment — except for a couple of important items, like the generator that runs the drill and the ethanol we will use to free the drill if it gets stuck inside the ice. Both items should arrive on Saturday.

When I was in Reykjavik’s airport, I suddenly remembered I had forgotten a backup set of drill cutters (the bits that cut into the snow as the drill goes down) — they were inside a little box that slid under my car’s seat while I was driving to the airport in Maryland. Fortunately, my mom came to the rescue, recovered the box and sent it expedited to Greenland — it should also arrive to Kulusuk on Saturday’s flight. Here’s a big thanks, mom!

Our put-in date continues to be April 1 — in the case not all of the missing gear arrived on Saturday, half of the team might still go to the drill site that day, while the other half will wait for the remaining equipment. We’ll make a firm plan tonight. Meanwhile, the team and I are testing our gear… and enjoying our surroundings! Kulusuk is a small town built around an airstrip and surrounded by big mountains. Its few hundred inhabitants mostly work in the airport, or are hunters or fishermen.

The weather’s beautiful, there’s not a cloud in the sky, and we’ve seen the northern lights — we have great photos that unfortunately, we can’t send right now. (I’ll send pictures as soon as possible, after fieldwork is done and we have a better Internet connection.)

—-

[Note: This blog post was written by María-José Viñas, based on a telephone conversation with Lora Koenig. Normally, Lora writes her own posts and María-José edits and publishes them. However, there is no Internet at Lora’s hotel in Kulusuk until a repairman arrives on Saturday’s flight.]

The Long Way to Kulusuk

March 27th, 2013 by Maria-Jose Viñas

By Lora Koenig

As I write this post, on Tuesday, March 26, our team is spread across the globe. I am at Dulles airport near Washington, D.C. waiting to get on a plane that will fly through the night to Iceland, and then onto Kulusuk, Greenland, tomorrow. My gear includes a thick parka, boots, cloths, medicine (just in case) and even some chocolate for Easter, all packed in a nice water-tight bag so no snow will get in it. Jay, Clem and Ludo are already in Kulusuk and Rick is waiting in Iceland to get on the same plane that will take me to Greenland tomorrow.

Some of my gear, before packing.

Some of my gear, before packing.

How did we all get so spread out? Well, it was mostly caused by the unpredictably of weather canceling flights and the limited number of flights into Kulusuk (there are only two each week — on Wednesdays and Saturdays).

To figure out our logistics, we have to start with our put-in date that is scheduled for April 1. “Put-in” is when we go from Kulusuk to our field site on the ice sheet to put in our camp and start the science. A put-in date of April 1 means we all need to arrive in Kulusuk at least one flight before the connection flight, to give us a cushion. Rick and I will arrive on the March 27 flight, which is the last flight with a cushion. We would have all arrived on this flight but the Easter Holidays threw a wrench in our schedule: all services will be closed in Kulusuk from March 28 to April 2. So Jay, Clem and Ludo arrived early to buy some extra food, fill fuel canisters and make sure all the science cargo arrived safely.

To get to Kulusuk, we go through Reykjavik, Iceland. Clem and Ludo got an extra day in Iceland because they had a boomerang flight. “Boomerang flights”, common in the polar regions, happen when a plane takes off for a location and then the weather takes a nasty turn, so the aircraft has to return to its point of origin. So you take a long plane ride but end up right back where you started – that’s one of the reasons we plan lots of extra days in our schedule for delays.

Beyond getting people to the field, we have to make sure all of our gear is there as well. Our gear was shipped the first week of March – different shipments were sent from Kangerlussuaq (Greenland), Greenbelt, MD, Salt Lake City, UT and Madison, WI. We have about 4,000 lbs of gear, including the science equipment, camping equipment, generators, and food. Jay, Clem and Ludo have confirmed that everything arrived safely except for our deep drill, which, proof of Murphy’s Law, happens to be one of the most important pieces of gear. We knew it had been delayed in shipping for a few weeks and right now, it’s in Kangerlussuaq, waiting to get on a plane to Nuuk and then onto Kulusuk. Hopefully it will arrive Tuesday, but the latest news is another delay due to airplane maintenance that canceled the flight to Nuuk. There are still two flights that could get the drill there in time, so we are watching this closely.  If the drill does not arrive in time, we will have to delay the field work.

Right now the weather is beautiful in Kulusuk, so hopefully all the pieces (people, gear and weather) will come together for an on-time field season. Now I will board a plane, hopefully get some sleep, and send my next update from Greenland.

The Packing Begins

March 20th, 2013 by Maria-Jose Viñas

By Lora Koenig

Hello and welcome (or hopefully, welcome back) to yet another of my field blogs! It’s a chilly day here in Greenbelt, Maryland, and I am packing away my warmest parka and sleeping bags – yes, I said bags, in plural, since I will need two to keep me warm enough during my upcoming field work. This time, my team and I are off to southeast Greenland to investigate not ice, but water we believe is trapped within the ice. During this expedition, jointly funded by both the National Science Foundation and NASA, we will be camping on the ice for a little over a week in a very remote area of the Greenland ice sheet. We will gather as much information as we can about the captive water, which we termed a perennial firn aquifer. This will be a very exciting field campaign because it is exploratory: we don’t know much at all about the aquifer, so we will attempt to determine some of its basic properties and which tools work best for exploring it.

The (tiny) red star marks the approximate location of our drill site in Greenland.

The (tiny) red star marks the approximate location of our drill site in Greenland.

Let’s start with what we do know. In 2011, during the Arctic Circle Traverse (ACT), two of our team members, Rick Forster and Clement Miege, were involved with a drilling project to investigate how much snow falls in southeast Greenland. That region has the largest amount of snowfall in all of Greenland  (for Twilight fans, think of this place as the Forks of Greenland: cold, dark and wet. And let’s add windy to the list as well.) Because southeast Greenland has such high snowfall and is relatively far way from any established camps, it’s a difficult place to work. Hence, not many ice cores have been drilled in this region. That’s why the ACT traverse went to Southeast Greenland: to collect much-needed cores . When they were drilling their last one, closest to the edge of the ice sheet and about 65 feet (20 meters) deep, and they pulled up the drill, they found water dripping out the end of the core barrel. This was quite a shock. The ACT team looked at their radar data, which can show the top of a water layer but not the depth, and were able to trace the water mass. They drilled again a few miles away and again hit water. The drill they were using was not designed to drill into water, so they had to stop. But they had discovered something new. And why does it matter there’s an aquifer buried under the ice, you might wonder? It is important because water that is released from the Greenland ice sheer can directly raise sea level. We are not sure that this water will ever be released, or if the quantity of water is large enough to matter, but anytime ice melts to water and has the possibility to leave the ice sheet, we want to know more about it.

Now Rick and Clem have invited myself and two others to go back and find out more about this water.  So here is the formal team lineup. The team is lead by Rick Forster, a professor of Geography at the University of Utah who specializes in remote sensing of the cyrosphere. Clement Miege (Clem) is a PhD student from the University of Utah who studies accumulation using radars.  Ludovic Brucker (Ludo) is a research associate for University Space Research Association at NASA Goddard Space Flight and is an expert in remote sensing of the ice sheets as well as sea ice. (You may remember Clem and Ludo from the SEAT traverse blog in Antarctica.) Jay Kyne is a driller from the University of Wisconsin’s Ice Drilling Design and Operations (IDDO) program. And then there’s me, Lora Koenig, a remote-sensing glaciologist from NASA Goddard Space Flight Center.

From top left, clockwise: Rick Forster, Ludo Brucker, Jay Kyne (his furry friend won't come to Greenland), Clement Miege and Lora Koenig.

From top left, clockwise: Rick Forster, Ludo Brucker, Jay Kyne (his furry friend won’t come to Greenland), Clement Miege and Lora Koenig.

We have assembled a great rough and ready team with a broad assortment of tools to learn as much as we can about the aquifer. We will all be traveling to Kulusuk, Greenland next week, which was conveniently featured by NASA’s Earth Observatory recently. From Kulusuk we will pack our gear, including ice core drills, temperatures sensors, a down-hole video camera and ground penetrating radars, into a helicopter and onto the ice sheet. We hope you will join us for this expedition. You may want to start watching the weather. Our fist put in date will be April 1, (April Fools’ Day – but this is no joke), weather permitting. Over the next few weeks, will we publish more blog posts about our science, the logistics of getting all our gear to Kulusuk, and life on the ice.

I guess there is just one last thing to do, and that is to name our team. The official title of this project is “An initial investigation of the Greenland perennial firn aquifer,” which I admit is not very exciting and I can’t seem to turn into a catchy acronym. So for now we will be the Greenland Aquifer Team. If you reader come up with a better name for our team, please post it in the comments section. We may just adopt it!

The Roadmap to Understanding Landsat

March 14th, 2013 by Adam Voiland

Yes, this chart is busy. Yes, there’s a lot of small text to wade through.

LDCM Infographic_lrg

Still, if you want to understand the science various Landsat satellites have been producing for 40+ years you should set aside 5 or 10 minutes to look over the infographic below.  It explains how the instruments carried by Landsat satellites have evolved, and it shows exactly where on the electromagnetic spectrum the instruments on the newest Landsat satellite will collect data. Besides visible light, Landsat sensors look at numerous bands in the infrared, beyond what human eyes can see.

Stay tuned to the Landsat program’s Twitter feed for all the latest updates about the status of the satellite. If all goes well, we should get a first glimpse at LDCM data sometime in the next few weeks. Study now and then you’ll really appreciate that this “first light” will be much more than another pretty picture taken from space.