Posts Tagged ‘radar’

« Older Entries

Greenland Aquifer Expedition: That’s All, Folks!!!

April 23rd, 2014 by Maria-Jose Viñas

By Ludovic Brucker

After an unexpected phone call from the helicopter pilot on Easter Sunday, Ludo and Clem ended the second season of the Greenland aquifer campaign, with the support of Susan, Rick, Lora, Bear, the weather office, and many others. Thanks all for this Easter bunny.

After an unexpected phone call from the helicopter pilot on Easter Sunday, Ludo and Clem ended the second season of the Greenland aquifer campaign, with the support of Susan, Rick, Lora, Bear, the weather office, and many others. Thanks all for this Easter bunny.

We still wonder whether our campaign was successful, or fair. For sure, it was a mix of good and tough times.

The pluses, making our campaign a good time:

- We’re back from our field site, healthy and with all our fingers and toes!

- We set up an almost perfect camp, limiting drift considerably.

- Our two tents survived 65-knot winds!

- We had saucisson (dry cured sausage), and cheese for fondue!

- No polar bear smelled our food!

- We collected over 17 miles (28 kilometers) of high-frequency (400 MHz) radar data, including 12 mi (20 km) in one day (equivalent to half a marathon!)

- Along a 1.24-mi (2-km) segment of the 2011 Arctic Circle Traverse, we deployed 5 radars operating at 400, 200, 40, 10, and 5 MHz.

- We installed an intelligent weather station developed by the group at IMAU, in the Netherlands.

- We drilled down to 28 feet (8.5 meters) to record the density and stratigraphy of the ice layers.

- We have GPS taken positions during a week, which will help us calculate the velocity and flow direction of the ice in this basin.

The minuses, making our campaign “different”:

- Ten days of weather delays before the put-in flight to our ice camp location.

- Rick could not make it to the field with us.

- We never had three consecutive half days with weather suitable for work.

- Getting a sore throat from shouting to hear each other less than a meter apart.

- During the one day of great weather, we tried to drive down a pilot tube to install a piezometer in the aquifer. This technique is adapted for ground water found within rocky soils. It was the first attempt to do it in the Greenland firn. Driving the metal pipes in the snow through the ice layers was a nightmare, we had to pound on those pipes really hard to make them go through the thick ice layers and we ended up breaking them. At one point, we thought it was broken slightly deeper than 6 ft below the surface, so we dug a pit down to fix it. Well, it turned out that the broken piece was actually 13 ft down — we spent the only full day of great weather breaking our equipment.

- We ran out of cheese for fondue, and of saucisson.

- Sunscreen was completely useless this season.

The “funny” stuff:

- 30 m/s wind is brutal, though not necessarily hilarious.

- High-wind speed does not make the clock spin faster, only the anemometer.

- Supporting text messages and jokes from our family, colleagues, and office mates.

- Attempting a radar survey with a sled taking off every other gusts.

- Calling the Met Office for a weather forecast: “Hello! Since it’s windy here we are wondering what will happen in the next 36 hours.” “Yes, I can confirm that you are experiencing wind.” “Thanks so much for the confirmation, but there was no room for doubt.” “Oh, but it’s a nice spike on the computer screen! It won’t blow more, but it won’t stop soon. Be careful out there”. Patience with Mother Nature is the #1 fundamental.

- Coastal storms from the East might be our favorite storms on the ice sheet: wind stops, and temperatures increase, but it snows, snows, and snows.

- Sixteen feet of seasonal snow is deep, especially with the top 2 feet of fresh snow becoming harder and harder as they it gets compacted by the wind.

- Excavating 1765 cubic feet of snow between 8pm and 11:30pm (you got to use the weather window whenever you have it.)

- The frost all around our sleeping-bag head every morning.

- The 40 hours laying down in the sleeping bag.

- The melody of the wind on our tents and through the bamboo sticks we stuck around them.

- Using the sleeping bag to store hats, balaclavas, gloves, socks, boot insulation, contact lenses, tooth paste, sun screen (it was nice to dream about the day we would need it), batteries, head lamp, snacks, water bottles (ideally liquid and not spilling.)

- The pilot phone call at 8 am on Easter Sunday: “Good morning, happy Easter! Don’t go for a ski strip today, we will come pick you up in 3-4 hours!”

This was the synopsis of our 13-day adventure on the ice sheet. Even though we have been pulled out from the ice sheet, we still have some work to do, such as cleaning and drying our cargo and repackaging it for shipping to either Kanger, or the US.

Now, we would like you to enjoy some photos taken in the field. Thanks again for spending some times reading the blog and following us! Until the next campaign, enjoy each season and stay warm! As we say in French: “En Mai, fait ce qu’il te plaît!” In English, it translates to something like: “In May, do as you please!”. Yup, we’re heading back to the office and will hide behind a computer screen for the months to come.

All the best,

Ludo & Clem

(Left) As weather-delay days continue to keep us in town, Rick calls the weather office to assess whether we can afford to spend more days waiting to be deployed on the ice sheet. (Right) The saddest moment of our campaign, when Rick had to remove his gear from our cargo because he wasn’t coming with us to the field.

(Left) As weather-delay days continue to keep us in town, Rick calls the weather office to assess whether we can afford to spend more days waiting to be deployed on the ice sheet. (Right) The saddest moment of our campaign, when Rick had to remove his gear from our cargo because he wasn’t coming with us to the field.

(Left) At the Tasiilaq heliport, Ludo waits for our put-in flight on the cargo. (Right) The Air Greenland B-212 helicopter with blue skies and high clouds. After 12 days of patiently waiting, it looks like it’s a go!

(Left) At the Tasiilaq heliport, Ludo waits for our put-in flight on the cargo. (Right) The Air Greenland B-212 helicopter with blue skies and high clouds. After 12 days of patiently waiting, it looks like it’s a go!

Flying over the sea-ice covered Sermilik fjord to reach the ice sheet.

Flying over the sea-ice covered Sermilik fjord to reach the ice sheet.

Getting closer to the ice sheet, flying over crevassed tributary glaciers.

Getting closer to the ice sheet, flying over crevassed tributary glaciers.

(Left) Our cargo, dropped almost two weeks ago, got buried under 2 feet of snow. But all the pieces were there! (Right) The B-212 landed near our cargo for a final move to the ice camp location.

(Left) Our cargo, dropped almost two weeks ago, got buried under 2 feet of snow. But all the pieces were there! (Right) The B-212 landed near our cargo for a final move to the ice camp location.

Approaching our camp site.

Approaching our camp site.

Minutes after the B-212 had left Clem and me on the ice sheet, we were already shoveling the fresh snow to install our cooking and sleeping tents before dark. This was no time for play, this was no time for fun, there was work to be done.

Minutes after the B-212 had left Clem and me on the ice sheet, we were already shoveling the fresh snow to install our cooking and sleeping tents before dark. This was no time for play, this was no time for fun, there was work to be done.

Our first pretty sunset in Greenland. In one month, we saw two of them.

Our first pretty sunset in Greenland. In one month, we saw two of them.

Early morning selfie! Not fully ready yet to put our cold weather gear on.

Early morning selfie! Not fully ready yet to put our cold weather gear on.

Shoveling, a typical activity at camp. Luckily this year we did not have to shovel too much to maintain our tents.

Shoveling, a typical activity at camp. Luckily this year we did not have to shovel too much to maintain our tents.

With the amount of fresh snow and the katabatic winds increasing, snow dunes were forming perpendicular to the direction of the wind -- it was like being at sea! Half a day later, sastrugis developed along the wind direction and snow became hard and compact.

With the amount of fresh snow and the katabatic winds increasing, snow dunes were forming perpendicular to the direction of the wind — it was like being at sea! Half a day later, sastrugis developed along the wind direction and snow became hard and compact.

A snow drift blocking the door of the kitchen tent.

A snow drift blocking the door of the kitchen tent.

The IMAU intelligent Weather Station, installed in its snow pit before we refilled it.

The IMAU intelligent Weather Station, installed in its snow pit before we refilled it.

Ludo inside a 2-m-deep pit dug with the hope to repair a broken pilot pipe for installing a pressure transducer in the aquifer.

Ludo inside a 2-m-deep pit dug with the hope to repair a broken pilot pipe for installing a pressure transducer in the aquifer.

Ludo, inside a larger 2-meter-deep pit dug after dinner with easterly winds increasing as another coastal storm was coming bringing more snow. Our rationale was that the sooner we dug, the less snow we’d have to remove.

Ludo, inside a larger 2-meter-deep pit dug after dinner with easterly winds increasing as another coastal storm was coming bringing more snow. Our rationale was that the sooner we dug, the less snow we’d have to remove.

Two hours before being pulled out from the field, Clem was dragging the 200 MHz radar, and carrying a GPS unit.

Two hours before being pulled out from the field, Clem was dragging the 200 MHz radar, and carrying a GPS unit.

(Left) Snow accumulated on our tent entrance overnight. We monitored it carefully every half hours from 2 am to the late evening. We took care of it a couple of times! (Middle) Clem calling the weather service to find out what wind speeds would hit us during the night. (Right) Our last saucisson, hanging over the snow/water pot.

(Left) Snow accumulated on our tent entrance overnight. We monitored it carefully every half hours from 2 am to the late evening. We took care of it a couple of times! (Middle) Clem calling the weather service to find out what wind speeds would hit us during the night. (Right) Our last saucisson, hanging over the snow/water pot.

Clem uses an evening break in the weather to drag a low-frequency radar in the fresh snow deposited in the previous hours.

Clem uses an evening break in the weather to drag a low-frequency radar in the fresh snow deposited in the previous hours.

Clem dragging the 400 MHz radar over the sastrugis, a challenging surface to work with.

Clem dragging the 400 MHz radar over the sastrugis, a challenging surface to work with.

Weather was clement enough with Clément to allow him for a pit stop during our half-marathon radar day around camp.

Weather was clement enough with Clément to allow him for a pit stop during our half-marathon radar day around camp.

A new day, different weather, and another attempt to collect more radar data. Since we aim at collecting surface-based radar data, not airborne radar data, we quickly had to stop because the wind would make the radar system take off with every other gust.

A new day, different weather, and another attempt to collect more radar data. Since we aimed at collecting surface-based radar data, not airborne radar data, we quickly had to stop because the wind would make the radar system take off with every other gust.

Pictures taken just one hour apart. In the top one, we were setting up a radar system. In the bottom one, we were actively wrapping it due to sudden katabatic winds that picked up in less than 10 minutes.

Pictures taken just one hour apart. In the top one, we were setting up a radar system. In the bottom one, we were actively wrapping it due to sudden katabatic winds that picked up in less than 10 minutes.

Indoor activities while the winds prevented us from working. (Left) Playing domino with mitts in a shaking tent, unforgettable times! (Right) Good food to keep us happy. Merci maman for thinking about us before leaving home.

Indoor activities while the winds prevented us from working. (Left) Playing domino with mitts in a shaking tent, unforgettable times! (Right) Good food to keep us happy. Merci maman for thinking about us before leaving home.

Our flight back had already been canceled twice. It turned out that this was our last evening at camp. We had a total of two pretty sunsets: one on the first day and the second 12 days later, on our last evening.

Our flight back had already been canceled twice. It turned out that this was our last evening at camp. We had a total of two pretty sunsets: one on the first day and the second 12 days later, on our last evening.

Our bags, ready for a surprise pull-out flight! Happy Easter!

Our bags, ready for a surprise pull-out flight! Happy Easter!

A great moment: the landing of the B-212. We were being pulled out!

A great moment: the landing of the B-212. We were being pulled out!

The crew and Ludo finish up loading the B-212.

The crew and Ludo finish up loading the B-212.

Last view of the ice sheet and glaciers.

Last view of the ice sheet and glaciers.

Forty minutes after leaving our camp, we see signs of life: a view of Tasiilaq (top) and Kulusuk (bottom), minutes before landing.

Forty minutes after leaving our camp, we see signs of life: a view of Tasiilaq (top) and Kulusuk (bottom), minutes before landing.

We’d like to finish with this quote from the French explorer Jean-Baptiste Charcot, who led the second French expedition in Antarctica around 1910:

“D’où vient l’étrange attirance de ces régions polaires, si puissantes, si tenaces, qu’après en être revenu ou oublie les fatigues, morales et physiques, pour ne songer qu’à retourner vers elles? D’où vient le charme inouï de ces contrées pourtant désertes et terrifiantes?” (“Where does the strange attraction of the polar regions come from, so powerful, so stubborn, that after returning from them we forget the fatigue, moral and physical, only to think of returning there? Where does the incredible charm of these lands come from, however deserted and terrifying?”) Jean-Baptiste Charcot, Le Pourquoi Pas?

Greenland Aquifer Expedition: Radar Days on the Greenland Ice Sheet

April 16th, 2013 by Maria-Jose Viñas

By Clément Miège

Hi there! Today I will give you some background on the radar measurements we collected in southeast Greenland. The radar we deployed is sensitive to snow density changes and to wet snow. The main goal of the radar measurements was to provide information about the spatial variations of the top of the aquifer (a water layer trapped within firn, or old snow).

The radar we used is made by GSSI, a company specialized into geophysical measurements, and it has a center frequency of 400 MHz. In snow and firn, the electromagnetic waves sent by this ground-penetrating radar can image approximately the first 50 meters of a dry snowpack. The layers that we observe in radar measurements show the snowpack stratigraphy (density changes). If there is water within the snow and firn, we observe a really strong radar echo in the radar profile. Then, by dragging the radar around, we are able to see how this water layer evolves spatially.

Here is the radar system in action, with Ludo pulling the sled. It can be a pretty tiring job with the wind and the cold. The balaclava was an absolute must to protect your face from the freezing temperatures.

Here is the radar system in action, with Ludo pulling the sled. It can be a pretty tiring job with the wind and the cold. The balaclava was an absolute must to protect your face from the freezing temperatures.

Mostly to lighten our helicopter loads, but also to exercise a bit, we decided to pull the radar sled with skis. But it ended up not being an easy job at times: some of our field days were really windy and cold, so we needed to be warmly dressed and have our face well-protected. In addition, we carried a backpack with the GPS unit and a battery – they became pretty heavy after an hour of pulling the radar. Ludo and I set up the rule of not doing more than 2 hours of survey at a time, which corresponded to about 5 km total.

Once on the ice sheet, as soon as the helicopter took off, we turned on the radar. Indeed, we wanted to make sure that we had been dropped over water and then find the best location for our drilling site. By looking at the radar profile, we identified the water layer (great!) and we converted its depth from electromagnetic wave two way travel time to meters. We observed that over a 2-km transect, the top of the aquifer varied up to 10 meters. By knowing this variation, we were able to pick the site location at a depth that fitted our science needs.

An example of the radar profile observed: the bright reflector represents the top of the water layer. Other internal reflections can be seen -- they are linked to previous summer layers, which are denser.

An example of the radar profile observed: the bright reflector represents the top of the water layer. Other internal reflections can be seen — they are linked to previous summer layers, which are denser.

The advantage of doing this preliminary radar survey is that we then knew before drilling at which depth the drill would encounter water and penetrate into the aquifer. And the good thing was that the radar picked the right water depth in both drilling sites! The radar ended up being a really good tool to extend spatially the localized information obtained by the firn cores.

Doing some radar at sunset with no wind was just so great!

Doing some radar at sunset with no wind was just so great!

For the radar survey, we were doing some elevation transects, to see how the water layer changed with the local topography, and some grids and bowties to extent spatially the core site stratigraphy. We stayed within a radius of 2 km from our camp.

Overall, doing the radar surveys was a great experience. It’s incredible to think that we were skiing with liquid water right below us, while surface temperatures averaging -15C.

Finally, concerning the radar setup, we have already some improvements in mind for the next time. For example, the GPS unit and its antenna need to be in the sled, maybe mounting the GPS antenna on a corner of the radar sled, trying to keep the all setup stable. That will allow us to drag the radar longer. We will work on that for our next radar adventure!

SEAT: Satellite Era Accumulation Traverse: Camp Life

January 24th, 2012 by Maria-Jose Viñas

By Michelle Koutnik

This is one of our six camping sites. The Scott tent is the big yellow tent and the others are the sleeping tents. The bathroom is at the end of the site.

Each of our six different camping sites consisted of one cook tent, four sleeping tents, and a bathroom area (more on that later). The cook tent was a “Scott” tent, which is an enduring style and named for the polar explorer Robert Scott. It was a tight space for five people but we were able to crawl in and then sit around together with one person managing the two-burner propane stove in the corner. The Scott style tent was much sturdier than our mountain-style sleeping tents, but it was also more time consuming to put up and heavier to transport. Since we were moving nearly every other day, we wanted to keep our camp as simple and as light as possible. The Scott tent was a necessary addition for cooking, but also as a reliable shelter in the two strong storms we experienced during the traverse.

Camp with our snow machines and the radar sled.

It took a few hours to set up camp, and a similar amount of time to break it down and repack the gear on the sleds. Randy, Jessica, and I were responsible for breaking down most of the camp and for setting up some of the camp on our own while Clement and Ludo collected radar data on traverse days. Once camp was set up at a new site, we could start melting snow for water and start cooking dinner.

On a traverse day, our camp life included the take down and setup of camp, plus collecting radar data. On an ice-coring day, our camp life included digging and sampling the snow pit, drilling the ice core, and eating a hot lunch. We ate well out there! Our standard meal plan included tortellini with pesto, spaghetti with meatballs, sausage with rice and vegetables, and burritos.  Sausages were popular and made their way into many meals. Special nights featured hamburgers with tater tots, and on Christmas we cooked scallops with rice and vegetables. Hot lunch on ice-coring days featured cheesy bagels fried with butter in our cast-iron pan. Since all the cheese and bread was always frozen, it required frying it all together before we could eat it – but it tasted great this way! Stormy-day food was simplified but did afford us the time to enjoy pancakes (two storms, two pancake breakfasts).

Frying cheese and bagels in butter for lunch.

The storms also affected our standard bathroom situation – usually a snow pit and tarp configuration. Ludo took the high winds and blowing snow as a challenge and created a snow-brick bathroom, which we tried our hardest to maintain from drifts!

Snow-brick bathroom and camp after a storm.

Maintaining camp and completing the science goals was a big job but we enjoyed being out on the ice sheet. For example, Christmas was a wonderful day to share together because a big storm started to clear, and we had lovely gifts to exchange, two small Christmas trees, and a very nice meal. Overall, the camp life was comfortable and enjoyable and with such a hard-working team, we were efficient at all the tasks necessary to make the camp run and be successful with the science.

Traversing to a new camp site.

SEAT: Satellite Era Accumulation Traverse: Radar days on the West Antarctic Ice Sheet

January 23rd, 2012 by Maria-Jose Viñas

By Clement Miege

Hi there! After more than three weeks spent in the field, our team is very happy to be finally back, with many memories of the traverse. This year has been a very intense experience and I would like to tell you a little more about this expedition. I will focus on the days we were doing radar surveys. Indeed, two different studies were set up during this field work. The first one was during the traverse days, where we did a radar survey from one camp to another with a range of 50-90 kilometers (31-56 miles) between the camps. On the other days the surveys were smaller, set up around each camp; they consisted of a 10-km bowtie and a 280- by 280-meter (918- by 918-ft) grid to get a better idea of the spatial variability of snow layer depth surrounding each core site. These grid surveys will show us how representative the ice core is compared to the surrounding area and help answer the question of whether we would have gotten a different result if we had drilled our ice core a few paces this way or a few paces that way. We were also looking more in detail at the layering in a 2-meter (6.56-ft) snow pit; to do that, we were using a metal plate at different depths of the snow pit.

The radar is sitting on a triangle-shape sled that is pulled by a snowmobile.

Here is a picture showing the two radars that operated simultaneously on the sled:

Both radars looked at the first 20 meters of the snow pack, sending electromagnetic waves into the snow. The snow radar (the big green horns in the picture) operates in a frequency range of 2-8 GHz. The other radar (the smaller brown horns) is the ku-band radar, sweeping between 12 to 18 GHz. The lower the frequency, the deeper the radars look. We have both radars for some redundancy in the system, imaging the snow/firn closest to the surface, which we core twice, and then the snow radar peers deeper than the cores to provide literally a deeper look. In addition to the 2 radars, we needed to know the elevation we were at, which is important for comparison with airborne data and also for modeling precipitation and temperatures. For that, we simultaneously collected GPS coordinates, which gave us our exact latitude, longitude and elevation every 5 seconds. The GPS antenna was on the very top of the sled, about 2.5 meters (8.2 feet) high.

On this sled, beside the radars sitting in the red box, we had packed: a blue bag, two black duffel bags and an orange bag. The blue bag was a survival bag, with all the gear needed in case we would have been caught in a storm; it included a tent, a stove, a shovel, and some food. The two black bags contained Ludo’s and my sleep kits, and the orange bag had some extra food, in case we were stuck for couple days. For the snow mobile, we had a repair kit under the seat to troubleshoot a possible failure. We were carrying two extra cans of gas as well. With this set-up, we were able to get a pretty light sled that was still comfortable and had all the gear we’d need in case of a storm or other circumstance separated us from the rest of the team, who were carrying all the camp gear. Fortunately, this never happened!

But now, let’s go back to the survey. The travelling days were the ones where the team was the most vulnerable: while we were traveling we had no shelters or camp set up to get back to if anything went wrong because we had to break down the entire camp in the morning, pack all gear on the sleds and ride with the snowmobiles pulling the sleds to the next camp. After driving between 50-90 km (31-56 mi), we would build our new camp, usually that same day in the afternoon. We had a total of seven travel days, covering a distance of about 500 km (310 mi).

Our sleds at camp. Strapping all your gear on the sled takes time and requires inventive skills; we called this the art of “Strapology”!

During travel days, the radar team left camp first, mostly because we had to drive at low speed to ensure the radar’s safety. Indeed, on the days we ran into large sastrugi (small ridges of hard snow), we drove at less than 10 km/h (6.2 mph). These sastrugi made our travel a little bit more difficult. Toward the end of the day, the team responsible for breaking down camp would leave the radar team and go 20 km (12 mi) ahead, to start setting up the new camp.

The days we were at camp, we did some small radar surveys: a bowtie and a grid around the core site. To help us drive the snowmobile straight for the grids, we set up flags to visualize the corners and sides. In the deep field, everything is white and flat, so it is hard to maintain a nice bearing just by following the GPS for such a small grid.

Clem and Michelle, getting ready for a short walk to set up the grid flags.

The last side survey with the radar was done in the snow pit. After analyzing the snow pit and picking up snow samples for further laboratory analysis, we used the pit to calibrate the radars and look at a detailed snow layering for the top 2 meters.

Ludo in the snow pit, sliding a metal plate in the snow at different depths. The plate creates a very bright horizon that is easily detectable on the radar return signal.

After a day of travel or after doing a grid, it is important to back up the radar data. The sleeping tents are a warm and cozy shelter to set up a “recharging station”. In addition to backing up the radar data, we recharged the satellite phone, GPS, and computer batteries.

We had to check the integrity of the radar sled at each camp site. Here is Ludo, checking the screws on one of the three legs connecting the snowboard to the sled.

To conclude, I want to say that this traverse was definitely an amazing experience and I was happy to share such a good time with the team. I am already excited to start looking at the radar data in detail to see what we can learn of the past few decades of snow accumulation in this part of the West Antarctic Ice Sheet.

SEAT: Satellite Era Accumulation Traverse: The Traverse Begins

December 22nd, 2011 by Maria-Jose Viñas

By Lora Koenig

Byrd Station (Antarctica), 11 December — We all got up at 5 AM this morning. I had gone to bed at 2 am because I had been backing up all of the radar data, which took much longer than anticipated. The traverse team went to bed early to be rested for the day.

It was a beautiful morning: warm, no wind, with thin, low, overcast clouds. The sleds were loaded and ready to go, already hooked on to the snowmobiles. Ludo was the first to the sleds and he started the generator, which powers heating pads that are used to warm the radars after being cold soaked all night. After about 15 minutes of warming, the radars can be started. During this time, the GPS is also turned on so it can obtain lock with the satellites and provide accurate positions.

I took the snowmobile covers off and helped Michelle load the final sleep kits on the sleds. The sleep kits are the last things to be loaded and contain a sleeping bag, sleeping bag liner, insolite pad, thermorest, pillow (if you want one, though most of us prefer to just use big red as a pillow), and a pee bottle so you don’t have to leave the tent in the middle of a cold night or storm. All of this is stuffed into a duffle bag and goes with you everywhere inAntarctica.

Clem bringing his final fear over to the sleds.

Jessica and Randy ready to head out on the traverse.

Once the generator was started, the team headed into the galley for a quick breakfast. Most of the camp was still asleep because Sunday is their day off; however, Kaija and Tony, the camp manager and assistant manager, came up to see the team off. After breakfast, the radars were turned on and the snowmobiles started. We took some final pictures and I tried to shoot some video but the small video camera we brought along is not operating well in the cold. The feeling of both excitement and nervousness was in the air. Excitement for finally getting to the traverse portion of the science and nervousness because the team is headed out into the remoteness ofAntarcticaalone. They will no longer have the security of an established camp and will have to rely on each other for everything. The team is strong and I know they will do well. During the traverse they will most certainly cover ground that no human has ever walked on before.

Ludo (left) and Clem(right) the radar team ready for the traverse.

The team loading the final items into their snowmobiles including their lunches for the day.

A final picture of the traverse team just before they took off. From left to right: Clem, Ludo, Randy, Jessica and Michelle.

At 6:41 AM, Michelle led the team out of Byrd Camp. She pulled a Siglin sled and a Nansen sled with food, the Scott tent, an HF radio for emergency communication, the radar spare parts, the sleep kits and personal gear. Michelle rides one of the two snowmobiles with mirrors so she can easily watch the team. Jessica followed pulling 2 Siglin sleds with food, the ice core drill and two ice core boxes. Randy was third in line with two Siglin sleds with even more food, the mountain tents, emergency bag, and all of the fuel. Ludo pulled the final snowmobile out and into line pulling the radar sled with Clem on the sled operating the radar. We all screamed and waved as they pulled away.

Michelle leads the team out of camp with a final wave goodbye.

Jessica follows Michelle out of camp.

A final wave from Ludo pulling the radar sled that is measuring the accumulation layers. Clem is sitting on the sled operating the radar.

I continued to watch as they moved further towards the horizon. They became smaller and smaller dots on the horizon above tent city as they moved away from camp. At 7:12 AM their dots blurred into the horizon. The traverse had begun.

The four sleds seen above the tents as they get farther from camp.

The sleds appears as tiny dots on the left of the horizon, as the team disappears into the West Antarctic Ice Sheet.

They will travel 95 km (59 mi) today, their longest stretch of the entire traverse, to the first camp site. They are moving toward higher snow accumulation and towards WAIS Divide field camp. When they reach the site tonight, they will be95 km(59 mi) from Byrd and85 km(52.8 mi) from WAIS Divide, so if they have any problems they will head to WAIS Divide, not Byrd.

I am feeling very lonely sitting in Byrd camp without the team, but there is still important work to do. Remember, the team still does not have their fuel caches. The pilots are in camp, but today’s overcast weather, while great for traversing, is not adequate for flying: The clouds make it difficult to see the snow surface. The pilots call this surface definition. In order to do open field landings (landings not on a ski way), the pilots cannot have overcast clouds at any level. Now I am just waiting for the weather to clear so that the plane can cache the team’s fuel and ice core boxes. I am also waiting for an LC-130 to come into Byrd so I can get a ride back to McMurdo and then back to the U.S.

Today I will also check the base station GPS and give a science lecture about our traverse to the Byrd Camp residents.

Everyone at Byrd Camp has helped us so we can complete our science goals and it is much appreciated. Thank you, Byrd Camp! We especially enjoyed the wonderful food made by Chef Rob. The team’s send-off dinner was duck with a port sauce, chicken with polenta, pureed carrots, broccoli with hollandaise sauce, and Boston Cream and Lemon Meringue pie for dessert. Yummmmm!

Around 7 PM tonight I expect to get a satellite phone call from Michelle. From this point on, the blog will have less pictures for a while because we will only have voice communication with the team. It should take between 24 and 30 days to complete the traverse, including (bad) weather days. The team will communicate back to me at each camp site and I will update you on their progress. When they return, we will post more posts from them with pictures of the traverse.

The team is truly out in the wilderness. The only communication they have is through the sat phone, which will only be on for a few hours in the evening. They can call their families and their families can send 160 character text messages to the sat phone. The deep field ofAntarcticais a remote place.

Go team, go!!!!!! (The extra exclamation points are for Clem, who loves to use them.)

Notes from the Field