Posts Tagged ‘NASA’

« Older Entries Newer Entries »

South Pacific Bio-optics Cruise 2014: The Field Campaign Has Begun!

March 24th, 2014 by Aimee Neeley

The guys are finally on their way!  The R/V Nathaniel B. Palmer set sail from Hobart, Tasmania on March 20, 2014 ( GMT +11 hours).  The science party is made up of a total 29 scientists, 9 of which are graduate students. The first Go-SHIP station is located at 67°S, 150°W. While in transit, scientists will deploy the first Bio-Argo float of the campaign, 6 days from sail.  An Argo float is a battery-operated, autonomous float that can move up and down the water column collecting temperature and salinity profiles up to a 2000m depth by pumping fluid into and out of a bladder to manipulate buoyancy.  A Bio-Argo can collect measurements of chlorophyll-a and backscattering, in addition to salinity and temperature profiles.  The deployment of Bio-Argo floats is particularly important for validating ocean color remote sensing data.  For more information about Argo floats, you can proceed to the following links:

How Argo Floats Work

Bio-Argo Floats

First sunset photo by Mike Novak

First sunset photo by Mike Novak

Setting up a scientific laboratory on a ship is no easy task.  Space is usually limited and you must be able to play well with others.  We have filtration equipment (the large wooden frames) set up to collect the biogeochemical parameters, i.e. phytoplankton pigments, particulate organic carbon and particle absorption.  The parameters are collected onto small paper filters and frozen for future analyses back at NASA Goddard.  We also have two instruments set up on board to measure colored dissolved organic matter (CDOM), which is like tea, compounds extracted from plant material that can flow out into the ocean via rivers.  While in transit to the first station Mike, Joaquin and Scott are busy collecting samples.

Mike Novak filtering samples

Mike Novak filtering samples

 

Particles on a filter pad

Particles on a filter pad

Joaquin Chaves preparing samples for storage

Joaquin Chaves preparing samples for storage

A major addition to this year’s field campaign is a ‘souped-up’ underway-sampling system built by none other than Scott Freeman, our optics expert on board the Palmer.  The set-up contains multiple instruments that collect dissolved and particulate absorption, CDOM fluorometry, chlorophyll and particle scattering at 660nm.   The system is connected to the ship’s seawater system that pumps clean seawater from <10m depth through the ship and then to faucets at which the water can be accessed.  The term ‘clean’ means the plumbing that facilitates seawater pumping to the laboratories is routinely checked for clogs and algae growth.

Scott Freeman and the underway sampling system

Scott Freeman and the underway sampling system

Lastly, a blog post isn’t complete without a gratuitous photo of macrofauna.  Here is a photo of a petrel taken by Joaquin Chaves.  Can anyone identify what kind of petrel this is?

Flying Petrel

Flying Petrel

Greenland Aquifer Expedition: We Made It To Greenland!

March 24th, 2014 by Maria-Jose Viñas

By Clément Miège

YAY! We made it to Kulusuk on Saturday afternoon! It ended being a not-too-long journey, since all of our flights were on time.

Rick, Ludo and I followed different itineraries. Rick left Salt Lake City on Friday morning and a red-eye flight took him to Keflavik International Airport in Iceland. He landed early Saturday and took a bus from the international airport to the domestic airport in Reykjavik (an hour-long ride).

Ludo came from a meeting in Switzerland and arrived in Iceland late Friday night. He stayed at a nearby hostel in Keflavik. The next day, he was told to take a bus that would take him to the domestic airport and that supposedly departs every hour in the morning. After waiting for a while, with no bus in sight, he walked back to town (carrying 2 duffel bags, a ski bag, and 2 carry-on bags) and learned his first Icelandic words: Saturday and Sunday (laugardaga og sunnudaga.) Turns out, during the weekend, the bus schedule is different. Good thing that taxis were not too far and that he ended up making it on time for his 12:45 pm Greenland flight!

Me, I had a one-day layover in Reykjavik, which was a nice chance to rest a bit and quickly visit the city. I walked around town, not for too long because it was definitely cold and windy and I am not yet acclimated to cold temperatures — but I will be in the next few days!

Reykjavik is a nice city… when it’s not too windy. The day I arrived, the wind was gusting and it was just too cold. But I still went on a walk to check the Hallgrímskirkja church. This is the largest church in Iceland, an amazing structure! Inside, there is a lift, making the church a pretty sweet observation tower with nice views over the city.

[Note: Originally in this post, I erroneously said Halgrímskirja is a cathedral. Thanks to our reader Harry McKone for spotting the mistake!]

On the left, the cathedral with the statue of Icelandic explorer Leif Eriksson. This story explains the first discovery of North America by a Viking expedition, led by Leif Eriksson about 500 years before Columbus: http://www.history.com/news/the-viking-explorer-who-beat-columbus-to-america. On the right, downtown Reykjavik, composed of colorful houses. (Credit: Clément Miège)

On the left, the church with the statue of Icelandic explorer Leif Eriksson. This story explains the first discovery of North America by a Viking expedition, led by Leif Eriksson about 500 years before Columbus: http://www.history.com/news/the-viking-explorer-who-beat-columbus-to-america. On the right, downtown Reykjavik, composed of colorful houses. (Credit: Clément Miège)

The next day, I joined Ludo and Rick at the domestic airport (they both arrived before me). Useless to say that we had a lot of gear between the 3 of us, a total of 6 carry-on bags (including laptops, radar computer, transmitters, GPS, etc.), 5 checked bags (with our cold weather gear), and 2 ski bags. We were a bit scared at first by Air Iceland’s policy of only allowing one 5kg carry-on and a 20kg checked bag per person, but we ended up getting through easily, which was a relief!

Icebergs trapped in sea ice (Credit: Ludovic Brucker)

Icebergs trapped in sea ice (Credit: Ludovic Brucker)

The flight was smooth and fast, only 2 hours to get to Greenland. Approaching Greenland, we started to see more and more winter sea ice along with some big icebergs trapped within it, which is always very pretty. The first islands finally appeared and we were about to land on one of them, where the little town of Kulusuk is.

Interestingly, the sea ice in the fjord next to Kulusuk seemed weaker and it might be thinner this year than when we visited last year. Ludo noticed some spots that were already ice free (see the photo below); those spots were covered by sea ice last April. The wind redistribution of the sea ice and the warm temperature in Kulusuk in January might be the reasons for this weaker sea ice pack.

View from the plane of the sea ice around Kulusuk  (the little black dots are houses.) (Credit: Ludovic Brucker)

View from the plane of the sea ice around Kulusuk (the little black dots are houses.) (Credit: Ludovic Brucker)

Our plane, freshly landed at the Kulusuk airport, with a faint sun halo in the background. (Credit: Rick Foster)

Our plane, freshly landed at the Kulusuk airport, with a faint sun halo in the background. (Credit: Rick Foster)

Shortly after landing, we made it to our hotel, and started to unpack. This year, Ludo and I brought back country skis, which is a really nice and fun improvement, and also a faster way to get from the hotel to the airport, or to go to the old garage where some equipment is stored from last year.

Ludo, getting ready in front of the hotel to ski to the airport. (Credit: Clément Miège)

Ludo, getting ready in front of the hotel to ski to the airport. (Credit: Clément Miège)

At the airport warehouse, we found all the equipment that we sent from the U.S. We counted the boxes and, great news, everything had made it her, and was in pretty good shape too! We started to unpack some items and took some of them to the hotel for re-organizing them some more.

At the Kulusuk airport, Ludo moves equipment around to consolidate our cargo (left). Some equipment is ready to be loaded on the helicopter (right) to go to our field site, but other gear needs some repacking, which will be one of our main tasks for the coming days. (Credit: Clément Miège.)

At the Kulusuk airport, Ludo moves equipment around to consolidate our cargo (left). Some equipment is ready to be loaded on the helicopter (right) to go to our field site, but other gear needs some repacking, which will be one of our main tasks for the coming days. (Credit: Clément Miège.)

Today, a big storm is here and it’s a white-out outside — crazy, brrrrr! It is snowing horizontally. So happy we are not in the field right now! It is really windy this morning, about 37 mph, so we have decided to work indoors. We have couple projects: preparing antenna tubing for the low-frequency radar, preparing the radar sleds, assembling the ARGOS antenna pole, and starting to pull out the equipment from our last year’s storage place.

I can’t take any photos today, since it’s just white everywhere and impossible to see the surrounding buildings.

We are still on track for leaving this Thursday (March 27) to go to our camp site on the ice sheet. Amazingly, the only day of the week that looks good for flying out is Thursday — see the forecast below. That is lucky for us!

According to the Weather Channel, the only day with good weather this week is Thursday -- good thing we are scheduled to leave then!

According to the Weather Channel, the only day with good weather this week is Thursday — good thing we are scheduled to leave then!

I’ll send a new blog post in a few days, stay tuned!

South Pacific Bio-optics Cruise 2014: The South Pacific Bio-optics Cruise: An Introduction

March 20th, 2014 by Aimee Neeley

Three members of the Ocean Ecology Laboratory’s Field Support Group (FSG; Code 616) will embark on a 45-day journey from Hobart, Tasmania to Papeete, Tahiti on the icebreaker R/V Nathaniel B. Palmer (NBP).  The field campaign is part of the US Repeat Hydrography, P16S, 2014 under the auspices of GO-SHIP and sponsored by the US Climate Variability and Predictability Program (CLIVAR).  You can find more information about the program here.  The FSG will collect biogeochemical samples and bio-optical data across the South Pacific.  These data will eventually be ingested into NASA’s SeaWiFS Bio-optical Archive and Storage System (SeaBASS) and subsequently used for ocean color satellite validation activities.

During the next six weeks, I will be helping my colleagues chronicle their journey over the high seas.  They will share not only information about the science but also describe the daily life of a sea-going scientist.  I, too, participate in many of these campaigns and am very familiar with the NBP having sailed on it three times during my career.  Alas, I could not participate in the journey so must live vicariously through my colleagues.  Below, you will find the biographies of the three NASA scientists that are participating on this cruise: Joaquin Chaves, Scott Freeman, and Mike Novak. You can also follow the ship track here.

Joaquin Chaves, received his PhD in oceanography from the University of Rhode Island in 2004. For his graduate work he conducted research on estuarine biogeochemistry. He held postdoctoral positions at the Marine Biological Laboratory in Woods Hole, MA, and at Brown University, in RI, where he focused on the biogeochemistry of land use change in tropical forests, particularly in the Amazon region. He’s been a contract scientist at NASA-GSFC since 2009, where he has focused on ocean color satellite remote sensing and marine bio-optics. He has participated in ocean-going field campaigns to the Atlantic, Pacific, and Arctic Oceans, as well as the East China Sea.

Joaquin Chaves

Joaquin Chaves

A native Californian, Scott Freeman grew up in Salinas, near the Monterey Bay, and attended the University of California, San Diego. After a lengthy hiatus in New York City, he returned to college and received a B.S. in Biology from the City University of New York. He then attended the University of Rhode Island’s Graduate School of Oceanography, completed a master’s degree, and stayed in Rhode Island to work first for the URI, and then for Wetlabs, a manufacturer of oceanographic optical instruments. While in Rhode Island, he participated in many cruises and coastal exercises, including NASA’s Southern Ocean Gas Exchange Experiment (SO GASEX) and ONR’s Radiance in a Dynamic Ocean experiments (RADYO).

Since joining SSAI in 2011, Scott has participated in several field campaigns for NASA’s Ocean Ecology Laboratory, and is responsible for AOP and IOP data collection and processing. He lives in Alexandria, VA with his wife Heidi and sons Charles and Adrian. When not engaged in field research, one can find him playing bass for the Washington Metropolitan Philharmonic Orchestra.

Scott Freeman

Scott Freeman

Mike Novak grew up in Piscataway, New Jersey, about 30 miles southwest of Newark.  After graduating high school he attended the Richard Stockton College of New Jersey where he earned a B.S. degree in marine science.  After college, he attended graduate school at the University of New Hampshire where he earned an M.S. degree in Oceanography.  He worked as a researcher at UNH before relocating to the Washington D.C. area where he now works as an oceanographic researcher at NASA-GSFC.  When he is not sailing the high seas, he is also an avid musician playing at various venues around the D.C. area with his band Novakaine.

Mike Novak

Mike Novak

Greenland Aquifer Expedition: Greenland firn aquifer expedition: Season two!

March 19th, 2014 by Maria-Jose Viñas

By Clément Miège

Hi there! I am Clément Miège, a Ph.D. student at the University of Utah and I am going to take you along with us to our second expedition to the southeast region of Greenland, to investigate the physical properties of a firn aquifer. And what is a firn aquifer, you might be wondering? It’s a reservoir of perennial water (that is, water that doesn’t freeze in the winter) that is trapped within the compacted snow layer (or firn) of the Greenland ice sheet. If you didn’t follow last year’s edition of this expedition and/or you want to learn more about the firn aquifer, here are some readings I recommend:

  • Our team’s blog posts from last year will give you some background material on the set-up of the expedition and work over the ice sheet. It describes the travel to our field site in Greenland and the techniques we used on the ice sheet to do a first measurement of the volume of water within the firn aquifer.
  • To complete this story, my team and other researchers recently published a journal article where we described how this aquifer was serendipitously discovered in the spring of 2011 when we were sampling regions of high snow accumulation. The paper also describes how we first mapped the aquifer using a combination of firn cores, ground radar and airborne radars.
  • Finally, we published another journal article following up on the blog posts from last year and determining the volume of the water trapped in the firn aquifer at a specific location. We obtained this volume by comparing the mass of a wet firn core taken inside the aquifer to a core taken in an neighboring area of dry snow. If you assume this water volume is constant throughout the entire firn aquifer (which spreads over an area larger than Western Virginia!), that would correspond to 140 gigatonnes of water stored. To say it in a different way: if the water runoff the ice sheet, it would raise sea levels worldwide by 0.016 inches (0.4 mm).
  • And if you don’t feel like reading scientific papers right now, NASA put out a story about our findings, too.

We are now getting ready for another expedition to Greenland to further monitor the firn aquifer. This year, our four main tasks will be to maintain our equipment currently in place (which performs temperature measurements), collect additional measurements (with a radar), install a weather station, and try traditional ground-water techniques to date the water and calculate its permeability. I will explain in future blog posts why these measurements are important.

I will be part of a smaller team this year, since only three out of the five members of the first-year team are joining. Rick Forster and I will represent the University of Utah, while Ludovic Brucker comes from NASA Goddard Space Flight Center.

The Greenland Aquifer team in 2013.

The Greenland Aquifer team in 2013.

Here is the photo of the team from last year, from left to right; Jay, Ludo, Rick, Lora and I. Lora and Jay won’t be coming to the field this year (we sure will miss them!) If you want to know a bit more about each team member (current and former), you can check this blog post from last year.

Even when we haven’t set a foot in the field yet, the expedition to Greenland started about two months ago with organizing the logistics. Logistics can sometimes be underestimated, but it takes a lot of effort prior to getting to the field to prepare and test the scientific equipment and other field supplies, such as camping gear, food, and power sources.

For this expedition, all of the science equipment (GPS, radars with different frequencies — 5MHz to 400MHz–, piezometers, ice-core drill) was gathered from different institutions in Utah to be packed here and shipped to Kulusuk. Most of the non-perishable food and camping gear was left for over-winter storage after last year’s expedition in a warehouse in Kulusuk, to save on shipping costs.

On March 3 this year, the Utah gear left for Greenland; we’re talking about 800 lbs. of gear that left Salt Lake City on a truck headed to the JFK airport in New York, where it was flown to Reykjavik (Iceland) and then to Kulusuk (Greenland). We got a phone call early this week from our shipping company to confirm that all our equipment made it to Greenland — great news!

Gear packed at the office (left) and ready to leave the shipping facility at the University of Utah (right). We will see this gear again in Greenland!

Gear packed at the office (left) and ready to leave the shipping facility at the University of Utah (right). We will see this gear again in Greenland!

These last days have been really busy, gathering the last items for our science research, and also personal equipment. Yesterday, I was working at Blue System Integration in Vancouver, BC with a colleague, Laurent Mingo, who is developing IceRadar, an ice-penetrating radar system for the scientific community (see this website for additional info). Laurent has been working on an experimental beta version of the current radar that will allow us to penetrate through the firn aquifer to try to image the bottom of the aquifer gradually transitioning from water-saturated firn to ice.

Even if most of the scientific equipment is already shipped, there are always some last-minute important items that we end up adding into our suitcases (like the low-frequency radar). As a brief anecdote, last year, Rick traveled with a pelican case as a checked bag – inside, there was a bunch of wires hooked up to a datalogger. We were aware that it looked kind of suspicious, so it was a bit scary to go through customs with it! Me, I traveled with a 60-meter long thermistor string weighing over 50 lbs. in my checked bag, because the fabrication and calibration took longer than expected and we weren’t able to ship it ahead of time with the rest of the equipment. This year, luckily, most of the heavy equipment was ready on time and we are carrying only a couple random items in our checked bags.

We are starting our journey this week, leaving the U.S. on Thursday evening for Reykjavik, the capital of Iceland. After a day in Reykjavik, we will leave mid-Saturday on a 2-hour short flight that will take us to Kulusuk, Greenland. We are hoping for good weather; last year, Ludo and I “boomeranged” on our first try due to poor visibility at the Kulusuk runway.

In this old map from the US army (from 1941) you can see the location of the small city of Kulusuk in Southeast Greenland (red star), just below the Arctic Circle (~66.5°N). Our field camp on the ice sheet is represented by a white star. The map can be found at the Polar Geospatial Center.

In this old map from the US army (from 1941) you can see the location of the small city of Kulusuk in Southeast Greenland (red star), just below the Arctic Circle (~66.5°N). Our field camp on the ice sheet is represented by a white star. The map can be found at the Polar Geospatial Center.

Kulusuk is our first stop in Greenland. We will be staying at this small village for a few days in order to re-pack our field gear, test that everything is working well (stoves, generators, tents, science equipment, etc.) before going to the field. If we are lucky, we might see one of the polar bears that sometimes come close to town in this time of year.

Colorful houses make up the town of Kulusuk in Southeast Greenland. The shores of the fjord are covered by sea ice in the winter.

Colorful houses make up the town of Kulusuk in Southeast Greenland. The shores of the fjord are covered by sea ice in the winter.

After a couple of days, we will be heading to our fieldwork location on the ice sheet. A helicopter from Air Greenland will drop us and our cargo at our study site; it will be an about 45-minute commute.

That is it for this introduction; our next blog post will be from Greenland!

All the best,

Clément

Greenland Aquifer Expedition: Tracking Temperatures in the Aquifer

April 24th, 2013 by Maria-Jose Viñas

By Clément Miège

Hi there! Today I have another story to share with you! It’s about the tracking of the temperature evolution of the firn aquifer temperature by using two thermistor strings that we set up in the two holes made by Jay (see Jay’s post on drilling for details).

By tracking temperatures over a year, we will observe the firn heating mechanisms in the summer with the melt from the surface of the ice followed by water infiltration in the firn. In the winter, we will get a sense of the refreezing processes from the cold surface air, which cools the upper part of the firn and we will observe the persistence of the firn aquifer over the years.

To achieve this, we installed two thermistor strings with two different lengths: 30 and 60 meters. The shorter string has 60 sensors on it, sampling every half-meter. The longer one will only get a temperature reading every 2.5 meters but it will record deeper temperatures. Both strings are set to collect data every hour for an entire year, assuming the batteries last that long (hopefully!) The temperature chain is called a thermistor string because each sensor is a thermistor, a type of resistor sensitive to temperature changes. After measuring a resistance change, calibration curves allow us to retrieve temperature changes.

The thermistor-string story started in Utah, when we received the equipment late from the manufacturers, giving us only 5 days to work on it before leaving for Greenland. We realized that integrating the whole system together with the satellite uplink would take most of our last prep days.

It was definitely too late to ship the thermistor equipment with the rest of our gear, so Rick and I traveled with it in our checked luggage! I ended up with a 50 lbs of spool coiled with about 60 meters of cable in a suitcase. Rick had a black pelican case as his checked bag, with the second thermistor string, datalogger, ARGOS antenna and other pieces of hardware. We learned how to travel light, bringing minimal clothing, and wearing the cold-weather clothes in the airplane so we were able to meet the airline luggage restrictions – it definitely made for fun travels!

At the Kulusuk Hotel, in southeast Greenland, we finished integrating the thermistor string, mostly by picking the right data-transmission rate to the satellite in regards to our battery consumption estimates. Having the ARGOS satellite uplink will let us receive temperature data via email every day from the field site and tell us almost in real time what the temperatures are in the two holes.

In the field, shortly after drilling each hole (to avoid water refreezing due to cold air down the hole), we lowered the thermistor string down and backfilled the hole with surface snow. Then, we used the Felics drill to make a 4-meter hole to anchor the long pole that holds the ARGOS antenna.

Lowering the second thermistor string down the 30-meter hole.

Lowering the second thermistor string down the 30-meter hole.

On that day, the 20-knot katabic winds were blowing a lot of snow, so we used a mountain tent as a snow-proof environment to work with the electronics before dropping off the case in its hole. To give you a taste of the wind speed: Rick was charging one of the thermistor-string battery and the wind was so strong that it blew the small 1kw generator off…. crazy! When the winds finally died down, we buried the case in a 2-meter deep snow pit, because we wanted to prevent the case from being exposed to surface densification and melt during the summer.

Digging a deep snow pit for the thermistor case.

Digging a deep snow pit for the thermistor case.

Last check on the electronics, to make sure all the wires are tightened before closing the box -- next opening in one year!

Last check on the electronics, to make sure all the wires are tightened before closing the box — next opening in one year!

That is it! The box is down the hole.

That is it! The box is down the hole.

After backfilling the snow pit, the only evidence at the surface of the temperature strings is the top of the pole with the ARGOS antenna and a red flag!

After backfilling the snow pit, the only evidence at the surface of the temperature strings is the top of the pole with the ARGOS antenna and a red flag!

We are hoping to recover the case with the datalogger next year, but we are not sure if the ARGOS antenna will still be sticking out, because this sector of the ice sheet is getting a lot of snow accumulation in the winter. We will use a metal detector to find the metal pipes left near the case.

Because this is likely my last post for this expedition’s blog, I would like to thank the all team for this great adventure and everybody that was supporting this exciting research. Until next time!