NASA in Alaska 2014: G-LiHT | Off to a Flying Start

July 17th, 2014 by Kathryn Hansen


Text and photos provided by Doug Morton

NASA’s Goddard Space Flight Center

Credit: NASA/Doug Morton

Credit: NASA/Doug Morton

NASA and USDA Forest Service scientists are collaborating on an ambitious project to inventory forest resources in the Tanana Valley of interior Alaska, a region the size of Iowa. The pilot project, funded by the USDA Forest Service Pacific Northwest (PNW) Research Station and NASA’s Carbon Monitoring System (CMS), combines forest inventory plots and airborne remote sensing data from NASA Goddard’s Lidar, Hyperspectral, and Thermal Airborne Imager (G-LiHT). The remote forests of interior Alaska have never been included in national inventories of U.S. forest resources based on the costs and complexity of acquiring field data in remote and difficult terrain.

The partnership between NASA and the Forest Service leverages unique capabilities for airborne remote sensing and ground surveys of forest structure and composition. For NASA, key research questions include the spatial distribution of forest carbon stocks, disturbance and recovery from fire, and data fusion—including the opportunity to characterize forest composition using a combination of lidar, hyperspectral, and thermal data from G-LiHT.  G-LiHT data collections will also benchmark conditions across the Tanana Valley, an important part of the research domain for NASA’s Arctic and Boreal Vulnerability Experiment (ABoVE). For the Forest Service, the project will test the tradeoffs between a traditional ground-based surveys of forest resources and a hybrid approach to combine a limited ground sample with extensive coverage using G-LiHT airborne lidar and image data. Both NASA and the Forest Service are interested to track changes in forest cover and composition from wildfires and warming climate in coming decades.

As of July 14, the G-LiHT team had completed 40 percent of the planned flight lines across the Tanana region, totaling 3 TB of raw data and more than 2 billion laser shots fired. The flight crew is currently based out of Tok and Fairbanks, Alaska.

On July 14, 2014, NASA and USFS collaborators wait in Fairbanks, Alaska, for the start of G-LiHT flights. Top row: Hans Andersen (USFS PI), Tom Wirth (EPA), Grant Domke (USFS), Hobie Perry (USFS), Chris Woodall (USFS), Doug Morton (NASA), Gretchen Nicholas (USFS), Larry Corp (NASA/Sigma Space). Bottom: Matt Fagan (NASA/ORAU), Bruce Cook (NASA), Greg Reams (USFS), Ross Nelson (NASA)

On July 14, 2014, NASA and USFS collaborators in Fairbanks, Alaska, prepare for G-LiHT flights. Top row: Hans Andersen (USFS PI), Tom Wirth (EPA), Grant Domke (USFS), Hobie Perry (USFS), Chris Woodall (USFS), Doug Morton (NASA), Gretchen Nicholas (USFS), Larry Corp (NASA/Sigma Space). Bottom: Matt Fagan (NASA/ORAU), Bruce Cook (NASA), Greg Reams (USFS), Ross Nelson (NASA)

NASA in Alaska 2014: MABEL and the ER-2 Take Flight

July 17th, 2014 by Kate Ramsayer
NASA's ER-2 sits at the end of the runway, ready for takeoff. (Credit: Doug Morton/NASA)

NASA’s ER-2 readies for takeoff. (Credit: Doug Morton/NASA)

I didn’t know a hybrid sedan could take a corner that fast. We were sitting in the car, adjacent to the runway where NASA’s ER-2 high-altitude aircraft was about to land. Tim Williams – an ER-2 pilot who will fly later this campaign – was driving, poised to speed down the runway after the plane, in case his fellow pilot needed help avoiding obstacles and gauging conditions.

And as soon as the sleek ER-2 came into view and descended over the runway, we were off. Williams hit the gas (battery?) on the hybrid and swung onto the runway, sending me and my video camera flailing against the passenger-side door as the aircraft buzzed overhead. We raced down the runway, chasing after the plane as it landed, balanced on its two wheels.

ER-2 pilot Tim Williams watches for the plane to land. (Credit: Valerie Casasanto/NASA)

ER-2 pilot Tim Williams watches for the plane to land. (Credit: Valerie Casasanto/NASA)

On board the ER-2 is MABEL – the Multiple Altimeter Beam Experimental Lidar – a laser altimeter that is gathering data for the ICESat-2 mission. Wednesday’s flight was the first science flight of MABEL’s summer campaign to measure summer sea ice, land ice and more in Alaska.

The day started with a crew and weather briefing at 7 a.m., where pilots Denis Steele and Williams reviewed weather conditions and possible routes with ER-2 Mission Manager Tim Moes, NASA Goddard scientists Thorsten Markus and Kelly Brunt, weather forecasters and others.

With cloudy conditions on the way to the North Pole – covering the dynamic melting edge of the sea ice the campaign hopes to document – the team decided to head southeast out of Fairbanks. That route heads down to the Alaska Peninsula to survey volcanoes, then heads east over glaciers and high-elevation ice fields in south central to southeastern Alaska.

The ER-2, with MABEL on board, flew over volcanoes and glaciers in south central and southeastern Alaska.

The ER-2, with MABEL on board, flew over volcanoes and glaciers in south central and southeastern Alaska. (http://airbornescience.nasa.gov/tracker/)

With the flight route set, scientists made final checks of the instruments and Steele put on a pressurized suit – necessary for flying at 65,000 feet. He has to “pre-breathe” pure oxygen for an hour before flight, to raise his blood oxygen level.

 

ER-2 pilot Denis Steele puts on a pressurized suit before the flight, which will take him to 65,000 feet. (Credit: Valerie Casasanto/NASA)

Ryan Ragsdale, engineering technician, helps ER-2 pilot Denis Steele put on a pressurized suit before the flight, which will take him to 65,000 feet. (Credit: Valerie Casasanto/NASA)

Meanwhile, the plane was slowly towed out of the hangar onto the runway at Fort Wainwright and fueled up. The ER-2 crew and Williams went through the preflight checklist, which would be difficult for Steele as the pressurized suit has big gloves and limited dexterity.

ER-2s Denis Steele, in the cockpit, and Tim Williams, checking notes, get ready for the day's flight. (Credit: Kate Ramsayer/NASA)

ER-2s Denis Steele, in the cockpit, and Tim Williams, checking notes, get ready for the day’s flight. (Credit: Kate Ramsayer/NASA)

After Steele got in and started the engines, he taxied to the end of the runway accompanied by a maintenance van and a chase car: the van so that the crew could grab the bright orange stabilizing wheels, which fall off during takeoff, and the chase car driven by Williams, who supports Steele as necessary.

The ER-2 takes off amazingly fast. One moment it’s at the end of the runway, the next, the roar of the engine sounds. Then, all of a sudden, the aircraft’s in the air, climbing fast to the clouds. The plane disappeared into the clouds before the sound faded, and then the team went back to check the instruments’ vital signs, transmitted from flight.

A view of the Bagley Ice Field from 65,000 feet. (Credit: Denis Steele/NASA)

A view of Alaska’s Bagley Ice Field from 65,000 feet. (Credit: Denis Steele/NASA)

Just under seven hours later, after flying over a number of key glacier and volcano points north of the Gulf of Alaska, Steele landed the plane. The crew reattached the bright orange stabilizing wheels, and towed him back to the hangar, where scientists were eager to download and view the data.

Steele reported on highlights of the flight – what was cloudy, what was clear – and Moes ended with a reminder of the next early morning meeting to review weather conditions and determine whether the ER-2 would fly another route over Alaska today.

 

Ship-Aircraft Bio-Optical Research (SABOR): Beakers and Blankets: Readying for SABOR’s Ocean Voyage

July 15th, 2014 by Kathryn Hansen

Starting July 2014, scientists with NASA’s Ship-Aircraft Bio-Optical Research (SABOR) experiment will make observations from ship and aircraft off the U.S. Atlantic Coast aimed at advancing the technology needed to measure microscopic plankton in the ocean from space. For the next three weeks, follow SABOR researchers as they work toward finding out how and why plankton are changing around the planet, and where the carbon associated with plankton goes. Plankton play an important part of the climate system and deliver oxygen to the atmosphere, absorb carbon dioxide, and form the base of the marine food chain.

The following post is by Nerissa Fisher
Oregon State University

Clockwise from top left: A zooplankton species with a thalssiosira chain in the background; Paralia spp.; a colony of what may be dinoflagellates, and; a ciliate in a protective house -- it is most likely that the ciliate ate the phytoplankton that made this outter shell and it now using the shell for protection agianst zooplankton.

Clockwise from top left: a zooplankton species with a thalssiosira chain in the background; Paralia spp.; a colony of what may be dinoflagellates, and; a ciliate in a protective house — it is most likely that the ciliate ate the phytoplankton that made this outter shell and it now using the shell for protection against zooplankton.

Only three days until the SABOR cruise and I couldn’t be more excited! I have just finished my first year of graduate school in the Microbiology department at Oregon State University where I am pursuing my Master’s degree. I have been on several cruises before, one in the Gulf of Mexico and a couple in Bermuda, but this will be the longest cruise I have ever been on. This is also the first cruise where I have not worked at the research station where the cruise departs, so the entire process of preparing and packing for this cruise that is on the opposite coast has been a much different experience. In past cruises I was not so involved with preparation and my biggest concerns were making sure I had the right clothes and shoes for ship work or the packing list had already been determined and I made sure everything on the list got on the ship. Our research team has had several meetings to discuss the experiments and materials we need to pack. It seems like no matter how far in advance we started packing for this cruise we are still shipping boxes to the east coast. Silly things, like making sure we have beakers to mix solutions in, and all the little knick-knacks that are required for experiments have to be thought of in advance, because once you have left the dock there is no supply closet to run to if materials are missing.

Our research group is measuring how efficiently light energy is converted into phytoplankton biomass. To do this, we are making a number of different measurements simultaneously. Some of these measurements use a state-of-the-art flow cytometer, some use radioisotopes, and some are much simpler and involve filtering seawater and measuring chlorophyll, the pigment that phytoplankton use to absorb light for photosynthesis.

My life in the days leading up to this cruise has been most exhilarating. This past Friday and Saturday were completely booked doing phytoplankton bio-fractionation experiments for my thesis research. I wanted to finish those experiments so that I have data to analyze while on the cruise. Then Sunday, I absolutely HAD to watch the world cup final, which was a fantastic game!! As often as I could pull my attention away from the match, I was also sewing garments that will be used to shade seawater incubation bottles that will allow me to measure primary production at various light intensities.

An SEM picture of Thalassiosira pseudonana provided by Alfred Wegener Institute.

An SEM picture of Thalassiosira pseudonana provided by Alfred Wegener Institute.

Ok, so maybe this doesn’t sound all that exhilarating, but I love phytoplankton ecophysiology, and I could not be more excited to have this opportunity to be at sea for three weeks collecting data that could provide much clearer insights into marine carbon cycling and meet other scientists in the same field. I will have a unique opportunity to apply the measurements I have collected for my research in the laboratory to understand how photosynthetic energy is allocated to different cell compartments, to field samples. This work could potentially be the second chapter of my thesis and broaden my current findings for a single diatom species (Thalassiosira pseudonana, see image above) to natural populations. Without these amazing primary producers of the sea, life on Earth would not exist as we know it and I can’t think of more important work than trying to better understand their physiology, especially in a world that is changing more rapidly than ever before. I am ready to be surrounded by great people, fun, yet exhausting, experiments, and nothing but blue.

NASA in Alaska 2014: MABEL readied to snap photos from above

July 15th, 2014 by Kate Ramsayer

Clouds blanketed much of MABEL’s potential flight routes over the Alaskan Arctic or southern glaciers on Monday, so the ER-2 aircraft stayed in the hangar at Fort Wainwright in Fairbanks, Alaska.

But the MABEL team was busy. They took advantage of a day on the ground by improving the instrument’s new camera. The goal is to take more images like the one below, to help scientists interpret the data from the airborne lidar instrument.

As the ER-2 aircraft traveled from Palmdale, California, to Fairbanks, Alaska, the camera on MABEL took this shot of wind turbines near Bakersfield, California. (Credit: NASA)

As the ER-2 aircraft traveled from Palmdale, California, to Fairbanks, Alaska, the camera on MABEL took this shot of wind turbines near Bakersfield, California. (Credit: NASA)

It’s the first week of the summer 2014 campaign for MABEL, or the Multiple Altimeter Beam Experimental Lidar, the ICESat-2 satellite’s airborne test instrument. MABEL measures the height of Earth below using lasers and photon-counting devices. This year, the team is using a new camera system to take snapshots of the land, ice and water in parallel with MABEL’s measurements.

The MABEL instrument is nestled snug in the nose cone of the high-altitude ER-2, which has a circular window in the base where the laser and the camera view the ground. To get access to MABEL and the camera, the crew propped up the nose and wheeled it away from the aircraft.

The ER-2 crew rolls the aircraft's nose -- containing MABEL -- away from its body, so engineers could work on the instrument. (Credit: Kate Ramsayer)

The ER-2 crew rolls the aircraft’s nose — containing MABEL — away from its body, so engineers could work on the instrument. (Credit: Kate Ramsayer/NASA)

The team then carefully slid the instrument out onto a cart, so that MABEL’s on-site engineer and programmer – Eugenia DeMarco and Dan Reed – could work on the camera and ensure the connections were sound.

MABEL engineer Eugenia DeMarco and programmer Dan Reed work on improving the new camera system for the instrument. (Credit: Kate Ramsayer/NASA)

MABEL engineer Eugenia DeMarco and programmer Dan Reed work on improving the new camera system for the instrument. (Credit: Kate Ramsayer/NASA)

When the camera was set to document the terrain from 65,000 feet, the team slid MABEL back to its spot and wheeled the aircraft’s nose back to the rest of its body. They connected the instrument to the plane’s electronics, sealed the plane back up, and are ready to go whenever the weather cooperates.

Luis Rios, with NASA's ER-2 crew, checks the connections between the MABEL instrument and the aircraft. (Credit: Kate Ramsayer/NASA)

Luis Rios, with NASA’s ER-2 crew, checks the connections between the MABEL instrument and the aircraft. (Credit: Kate Ramsayer/NASA)

 

NASA in Alaska 2014: NASA’s Alaska Forest Survey Kicks Off

July 14th, 2014 by Kathryn Hansen

From early July through mid-August 2014, scientist Doug Morton of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, will be flying low over the treetops of interior Alaska. The purpose? First-of-a-kind look at the state’s forests with a portable, airborne imaging system called G-LiHT to map the composition, structure and function of the ecosystem.

According to Morton, key components of the fieldwork include:

“First, we are partnering with the U.S. Forest Service, as directed by the recently-passed Farm Bill, to incorporate remote sensing technology into forest monitoring efforts. Our pilot study will be the first inventory of forests in interior Alaska; a standard ground inventory (as in the lower 48) has always been too costly or logistically challenging to implement.

Second, we will study post-fire recovery, with plans to sample more than 80 percent of all fires in the Tanana region since 1950.  Fire is the major agent of change in interior Alaska, and understanding the patterns of forest recovery is essential to gauge the vulnerability/resilience of forests to future climate change.

Third, we will benchmark conditions (topography/permafrost, forest cover, forest composition) across a large portion of the Arctic-Boreal Vulnerability Experiment (ABoVE) science domain.”

Follow Morton through the summer as, Internet connection permitting, he sends updates and photos from the field.

 

 

Notes from the Field

Share