Notes from the Field

A Dash to the Field

July 28th, 2015 by Lora Koenig

Our team’s season has gotten off to a great start! So good that the field team was whisked into the field site early; so fast they couldn’t even get off a blog post. So I will fill you in from a nice comfy office in Colorado.

If you have followed our blogs in the past, or any Greenland research blog for that matter, they usually start out something like this, “Due to another weather delay we are still waiting for our flight into the field.” This usually goes on for a few weeks before the “WOW we actually made it to the field” blog is posted. In truth, we generally double the amount of time needed for the measurements to accommodate weather delays. Well this season is different!

Half the team arrived Kulusuk, Greenland, on July 22 and the rest on July 24They quickly organized the gear, arranged helo loads and were setting up camp at the field July 26. They started taking science measurements on July 27. This is certainly a record for us and after a very tough weather season in the spring we are hoping the sunny summer weather around 0 C (32 F) will help us.

Olivia did manage to get out a few photos from Kulusuk which is much more thawed out than it was a few months ago. Check out this old post with picture from Kulusuk just three months ago to see the change that occurs during the Arctic summer.

View from flight into Kulusuk with broken up sea ice (flat round ice) and ice bergs that have calved from the nearby glaciers (taller more jagged ice).

View from flight into Kulusuk with broken up sea ice (flat round ice) and icebergs that have calved from the nearby glaciers (taller, more jagged ice).

Camp gear at Kulusuk Airport being organized for helo flight into the field.

Camp gear at Kulusuk Airport being organized for helo flight into the field.

Open Fjord in Kulusuk with ice bergs.

Open Fjord in Kulusuk with icebergs.

Summer flowers.

Summer flowers.

Back to Southeast Greenland This Summer

July 27th, 2015 by Clément Miège

Hi there,

Our team is heading back to Southeast Greenland after about two months spent away from the ice sheet. These two months were busy; they consisted of fixing and maintaining some of our equipment (tents, thermal drill, piezometer heads…), starting to analyze samples, process the data collected in the spring, and preparing the logistic for the summer fieldwork. This fieldwork initially was planned for September, but to accommodate everyone’s schedule within the team, and the start of classes, we pushed the field experiment forward, from the end of July to August 20.

For this summer, we’ll have five team members from the spring field team. Nick and Lynn, based at the University of Maryland will be leading the seismic survey. Anatoly, from LTHE Grenoble (FR), will be in charge of the magnetic resonance soundings, while Olivia and I, based at University of Utah, will be doing hydrology measurements, firn coring, radar surveys and maintaining the iWS from IMAU Utrecht. This intelligent Weather Station (iWS) developed at IMAU in the Netherlands, was initially set up in the spring of 2014 with Ludo. We will be missing Lora, Kip and Josh who were part of the spring field campaign.

At our ice camp, the snow surface conditions will be quite different compared to our work this last spring. Not sure if you remember, but we were facing some extreme snowfalls last April, this snow was cold with relatively fine grains in general. During the summer, the story will be different: we are expecting wet snow due to melting at the surface. In fact, since June 20, 2015 the air temperatures have been rising above 0˚C, leading to surface melt. Hopefully this wet snow does not turn into slush which would make the camping a bit more challenging.

Plot of a time series of the air temperature (C) at our site since we left the field at the end of April 2015. We note positive temperatures starting around mid-June, an onward.

Plot of a time series of the air temperature (C) at our site since we left the field at the end of April 2015. We note positive temperatures starting around mid-June, an onward.

The goals for this summer are the following:

  • Seismic: armed with a sledge hammer, we will be hitting a metal plate, initiating sound waves which will propagate in the subsurface. The velocity changes of theses waves can be related to density changes and the presence of water in the subsurface
  • Magnetic resonance soundings: another noninvasive geophysical method using the signal generated by the magnetic resonance of water molecules to detect the aquifer vertical boundaries and water content.
  • Hydrology: measure water level, hydraulic conductivity and collect water samples to understand how fast water moves through the aquifer.
  • Radar measurements to image the water table spatial variations (400 MHz) and a lower-frequency system (~10-40 MHz) to also get the water-saturated firn to ice transition at greater depth.
Nick is practicing a few sledge hammer swings during the training at the PASSCAL facilities, Socorro, NM.

Nick is practicing a few sledge hammer swings during the training at the PASSCAL facilities, Socorro, NM.

Olivia retrieving the piezometer at our training site on a frozen lake near Kulusuk in the spring.

Olivia retrieving the piezometer at our training site on a frozen lake near Kulusuk in the spring.

400MHz ground-penetrating radar survey on the ice sheet.  (Credit: R. Forster)

400MHz ground-penetrating radar survey on the ice sheet. (Credit: R. Forster)

As a reminder, here is a photo of Kulusuk in the spring; we will take another photo from this summer to illustrate the landscape differences.

As a reminder, here is a photo of Kulusuk in the spring; we will take another photo from this summer to illustrate the landscape differences.

We are expecting iceberg floating in the ocean and fishermen using boats to get around instead of dog sledding on the sea ice. Stay tuned and we will be sending another update once our team is reunited in Southeast Greenland, getting our gear ready for this upcoming work on the ice sheet.

All the best,

Clément Miège

Calculating Coverage Statistics with CYGNSS

July 20th, 2015 by aridley

The CYGNSS satellite mission is actually eight satellites working together as a constellation, instead of one big satellite.  The good and bad of having 8 small satellites versus one big satellite were discussed in the previous post.  When the mission was proposed, we had already decided how many satellites we needed to have. Deciding on eight took a lot of calculations. In this post, I would like to share with you some of the thoughts that went into these calculations.

There were a couple of important questions that we wanted to consider: (1) how much of the Earth can be measured in one day using a constellation of satellites? and (2) once CYGNSS takes a measurement over a specific point on the Earth, how long will it be before it measures that point again?  These questions are somewhat related to each other, but not as much as you might expect.  They are also somewhat difficult to answer, but we knew that we had to address them if we wanted the mission to move forward.

How much of the Earth can CYGNSS measure in one day?

Almost immediately, we realized that the question itself was flawed. CYGNSS would be a mission to measure winds inside of hurricanes (or tropical cyclones, to be more general).  We didn’t care how often CYGNSS would measure the winds over, say, Antarctica, since there has never been a hurricane in Antarctica.  We therefore started out by plotting out where hurricanes  have actually occurred, which is shown in the figure below.

Locations of 10 years worth of tropical cyclones.

Locations of 10 years worth of tropical cyclones. The color represents the intensity of the wind speeds, with blue being weaker winds and red being stronger winds. The white section denotes where CYGNSS will orbit.

In order for a hurricane to form and grow you need two ingredients: (1) the Coriolis force, which is zero at the equator, and (2) warm water, which is most plentiful at the equator.  Hurricanes tend to form and be strongest just off the equator in the northern and southern hemisphere, but not really at the equator. As they move away from the low latitudes, they lose power quickly and often die out.  Therefore, there is a band around the low latitudes where the vast majority of cyclones have occurred (hence the name “tropical cyclone“).

When looking at this figure, it becomes clear that if CYGNSS goes to too high of latitude, say over Canada, then it is really just wasting time.  We needed to make sure that CYGNSS stays in the tropics.  And, when we calculated how often CYGNSS could measure some spot on Earth, we really only needed to care about the points where there had been a cyclone in the past, since those are the most probable locations for more cyclones.

We wrote a program that took a bunch of pretend CYGNSS satellites and a bunch of mostly-real, but virtual, GPS satellites and calculated where they would measure winds over the Earth.  We broke the world up in bins that were about 15 miles by 15 miles (which is about the resolution of the winds that CYGNSS will measure), and noted which bins have had cyclones in them in the past.  We then propagated the satellites around the Earth for a day and figured out all of the measurement points across the whole globe for the whole day and compared those to the bins with storms.  The percentage of storm bins that had at least one wind measurement in one day is what we call our coverage. Below are some figures that show all of the measurement points across the Earth that the software computed. These are after one, two, ten and fifteen orbits (each CYGNSS satellite will orbit fifteen times in one day).

Software predictions of where CYGNSS will take measurements after one (top) and two (bottom) orbits.

Software predictions of where CYGNSS will take measurements after one (top) and two (bottom) orbits.

Software predictions of where CYGNSS will take measurements after ten (top) and fifteen (bottom) orbits.

Software predictions of where CYGNSS will take measurements after ten (top) and fifteen (bottom) orbits.

Let’s take a very short break and talk about satellite orbits for a moment. If we ignore many things, we can describe a satellite orbit with a couple of numbers.  The first is the altitude that it will orbit at (this is a dramatic simplification). We chose 300 miles as a hunch that it would be a good orbital altitude.  And that turned out to be good for a variety of reasons, which I will explain in another post.  Another very important number that controls the orbit of a satellite is the “inclination”.  Simplistically, this is the maximum latitude that the satellite will pass over during an orbit.  So, if the inclination of a satellite is 42 degrees, it will just reach the latitude of Ann Arbor, Michigan (42 degrees) each orbit (but won’t pass over Ann Arbor each orbit), and in the southern hemisphere, will get down to -42 degree latitude.  If the inclination was 90 degrees, it would pass over the north and south poles every orbit.  If it was 0 degrees, it would stay over the equator all of the time.

When I talk about not wanting CYGNSS to pass over, for example, Greenland, that means that we wanted to limit the inclination of CYGNSS’s orbit.  The question was which inclination would work best?  Well, with our software, we could answer this by putting in different inclinations for CYGNSS and seeing how the coverage changed. Here are some of the results:

24 hour coverage statistics for CYGNSS given different possible inclinations for the satellites.

24 hour storm coverage statistics for CYGNSS given different possible inclinations for the satellites. We were wanting at least 70% coverage.

This plot shows that below about 33 degrees inclination, the coverage gets worse (i.e., lower storm coverage), and above about 40 degrees, the coverage gets worse also. We therefore chose 35 degrees, since it is a nice round number and comes over the continental United States.  But, from the plot, almost any inclination between 33 and 40 would work best.

So, the answer to the first question turned out to be: in 24 hours, CYGNSS, at an inclination of 35 degrees, will be able to measure about 75% of all points on Earth where storms/cyclones have been measured before. This is very close to the capabilities of other satellites that have measured winds over the ocean.  Which is good!

Repeat Times

The second question that was asked above is: Once CYGNSS takes a measurement over a specific point on the Earth, how long will it be before it measures that point again?

Since there will be eight satellites in the CYGNSS mission (which we have not even justified yet!), you can imagine having what is called a string-of-pearls: if you were to draw a string around the Earth (or put a hoola-hoop around the Earth), you could put eight satellites along that “string”.  These satellites then orbit along that string, and the Earth rotates under the string.  If you were to make a mark at a single point along the string, and then measure when satellites come across that line, you would get something like: 0 minutes, 12 minutes, 24 minutes, 36 minutes, etc.  The satellites in the CYGNSS constellation therefore come across the point on the string every (roughly) 12 minutes.

Now, the problem is that the Earth is rotating under the string.  If the mark on the string were at the equator, by the time 12 minutes has gone by, the Earth will have rotated by about 200 miles!  That means that each satellite will measure a different place on the Earth when it passes through the same point in the orbit plane, simply because the Earth is rotating. If CYGNSS were orbiting over the poles, then the best we could hope for is about 12 hours repeat times, meaning that the average time between measuring the same point on the Earth would be about 12 hours. But, since CYGNSS has a 35 degree inclination, it has a very strange pattern. At certain times of the day it measures the same point a lot, while other times of the day it doesn’t measure that point at all.

This can be seen if you look at the figure above that shows 1-2 orbits.  If you look at the Middle East, (virtual) CYGNSS was taking measurements in that region for both orbits.  But, if you look at South Africa, CYGNSS didn’t take any measurements during those two orbits.  The same was true if the south and north Pacific are compared: during the first two orbits, CYGNSS was taking measurements in the south, but not the north.

12 hours later, however, the orbit was exactly opposite, where CYGNSS took measurements over South Africa, but not over the Middle East (and the north Pacific as opposed to the south Pacific). CYGNSS tends to have a LOT of repeat measurements between about 25-35 degrees latitude (and -25 to -35 degrees latitude) during parts of the day, and no measurements during other parts of the day.  Interestingly this leads to an average repeat time over the entire tropics region of about 5-6 hours, which is, on average, better than most large satellites that orbit over the poles.

These were two questions that we had to try to answer before we even started designing the satellites or even before we submitted the proposal to NASA to ask them for the money to build the CYGNSS satellites.  We had to tell NASA exactly what they would be getting for their investment.  All of this was leading up to the question of how many satellites do we really need to launch in order to get the measurements that help us address our science goals.

In October of 2016, NASA will launch a constellation of Micro-Satellites called CYGNSS, which stands for the Cyclone Global Navigation Satellite System.  The primary science goal of the mission is to better understand how and why winds in hurricanes intensify, which is interesting from both scientific and practical points of view. CYGNSS is quite a unique satellite mission for many reasons. Over the next many posts, we will discuss how it is unique and the status of the mission.

A Single Cygnss Satellite

A single CYGNSS satellite. The top panels are all solar cells, except for the white strip in the middle, which contains a GPS antenna.

How Can You Measure Winds From Space?

Many missions before CYGNSS have measured winds from space using radio waves.  The way this works can be explained by the analogy of looking at a full moon reflected in a lake.  If you are sitting on the shore of the lake, and you see the moon reflected perfectly, then the water in the lake is extremely flat and still. This means that there is probably not much wind at all, since wind causes ripples on the lake.  If the moon looks distorted, then there are probably little waves on the lake, and the wind is probably low.  As the wind speed picks up, and there are more waves, the lake’s surface roughness increases, and the moon’s reflection is more distorted.  If you had an instrument that only measured the total reflected brightness of the moon, you would see that decrease as the wind speed increased.

Reflection of moon off of a lake.  (From http://www.rgbstock.com/bigphoto/nHepDs6/Moon+Reflected+in+Water+3)

Reflection of moon off of a lake. (From http://www.rgbstock.com/bigphoto/nHepDs6/Moon+Reflected+in+Water+3)

Interestingly, if you were sitting above the lake on the opposite shore (i.e., the same side of the lake as the moon), the situation would be completely reversed: when there was no wind, the moon would reflect in a way that you couldn’t see it, but as the wind speed picked up, the moon would reflect off of the little ripples, which would allow you to see hints of it.  This is called backscatter, while the other is called forward scatter. (You can read more about scatterometer techniques here.)

Most wind measurements from a satellite use the idea of backscatter to measure the amount of ripples on the oceans, which tells them the wind speed.  In order to do this, the satellites have a big transmitter on board, which sends radio waves down to the surface where they are scattered by the waves.  Some of those radio waves gets reflected back up (backscattered) to the satellite.  Because the amount of reflected signal is quite dependent on the amount of wave activity on the ocean, the strength of the signal tells you how much wave activity is occurring. No signal means no waves, and lots of signal meaning lots of waves. Since the amount of wave activity is dependent on the wind speed, by measuring the reflected signal strength, you can deduce the wind speed.

There are a few problems with this technique, though.  The first is that the satellite has to carry both a transmitter and a receiver.  The transmitter is heavy, is big, and requires a lot of power, which means that the satellite has to be huge. For example, the QuickScat satellite is about 2000 pounds.  Another problem is that the wavelengths of the radio waves that are used are absorbed by rain, so that the technique works well outside of hurricanes, but not within them. (The discussion of why they use these wavelengths is for another day!)

One of the brilliant things about the CYGNSS satellites is that they don’t carry a transmitter.  Instead, they use GPS signals, which are being transmitted by GPS satellites all day, everyday, across the globe.  Some of these radio waves are measured by your smartphone to tell you where you are, but the vast majority of the signals are just absorbed by the ground, or reflected back to space.  CYGNSS measures those signals that are reflected back to space. A benefit to using the GPS signals is that those radio waves go right through rain, so that CYGNSS can take measurements in the middle of a hurricane, just where other satellites don’t work well.

Each of the eight CYGNSS satellites carry a GPS receiver onboard which measures the strength of the signal that is being forward scattered off the ocean’s surface. This is related to the roughness of the ocean and the strength of the wind.  In this case, if the signal is strong, then the ocean is calm and there is not much wind, and if the signal is weak, there is a lot of wave activity, and the wind speed is strong.  By not having a transmitter onboard, the satellites can be tiny – only about 60 pounds.  This is allowing NASA to launch eight satellites as opposed to one. In addition, the price for those eight satellites is quite a bit smaller than the price for the single satellite. There are extremely good things about the larger satellites too, so that having both types of satellites in space allows a complementary approach to measuring the winds across the ocean and in many different types of conditions.

Over the next many posts, we will discuss other aspects of the satellites and the science behind the mission.