“The problem is that we haven’t had adequate data,” Ramaswamy continues. “Observations have been primarily limited to only a very few locations in the stratosphere. We have only 20 years of full global coverage from satellites. Of course radiosonde goes back 40 years but that is not global coverage.” Jim Hansen, of NASA’s Goddard Institute for Space Studies, agrees with Ramaswamy on the need for data. “Climate forcing by ozone is uncertain because ozone change as a function of altitude is not well measured. Especially at the tropopause (where the troposphere meets the stratosphere), we don’t know enough. The climate system is highly sensitive, especially to changes in the tropopause region. We need exact temperatures and ozone profiles at different altitudes and around the globe.” Hansen and others look forward to the launch of NASA’s Aura satellite in 2004. A vital part of NASA’s Earth Observing System, Aura will observe the composition, chemistry and dynamics of the Earth’s upper and lower atmosphere, including temperatures and ozone amounts. “What Aura will give us is quite exciting. There will be a suite of instruments measuring in regions not well measured before,” says Hansen. |
The graph above shows total ozone and stratospheric temperatures over the Arctic since 1979. Changes in ozone amounts are closely linked to temperature, with colder temperatures resulting in more polar stratospheric clouds and lower ozone levels. Atmospheric motions drive the year-to-year temperature changes. The Arctic stratosphere cooled slightly since 1979, but scientists are currently unsure of the cause. Future NASA missions, starting with the Aura satellite, will improve our understanding of the links between global climate change and ozone chemistry. (Graph based on data provided by Paul Newman, NASA GSFC) | ||
In spite of large uncertainties that remain, scientists express a sense of accomplishment with their achievements so far. “I think one of the successes has to be the fact that we can now explain the observed temperature trends in the stratosphere reasonably well, states Ramaswamy. “There is actually a very strong indication that the observed changes in radiative and chemical species are responsible for globe-wide cooling of the stratosphere.” |
NASA’s Aura satellite, to launch in 2004, will observe the composition, chemistry and dynamics of the Earth’s upper and lower atmosphere, including temperatures and ozone amounts. “What Aura will give us is quite exciting. There will be a suite of instruments measuring in regions not well measured before,” says Jim Hansen, at the NASA Goddard Institute for Space Studies (GISS). (Image by Jesse Allen) |
The Variable Arctic | |||
Although many global scale models agree with each other and with observations on the future of ozone recovery, most regional scale models do not agree. Atmospheric models show that the cooling influence of ozone depletion accounts very well for observed cooling winter-time temperature trends in the Antarctic, but not in the Arctic. Differences among regions make predictions about complex atmospheric chemistry problematic. The Arctic and Antarctic regions, where low stratospheric ozone amounts are of great concern, differ in significant ways. The complex topography of the high latitude Northern Hemisphere, with its distribution of land masses and oceans, makes the Arctic atmosphere more dynamic and variable. The Antarctic is colder than the Arctic. Antarctic winds form a relatively stable vortex for long periods of time, and the vortex allows temperatures of the air trapped within it to get extremely low. Drew Shindell: “In the south, air masses just sit over the pole and get colder.” Such stability makes the Antarctic somewhat more predictable than the Arctic. Drew Shindell says, “It’s so variable in the Arctic that we have to have better data to figure out what we should believe and what we can have confidence in for the future.” |
|||
Although dramatic ozone depletion did not occur in the Arctic in the 1980s when it occurred in the Antarctic, times are changing. Very large ozone losses have occurred in the Arctic recently, especially in the late 1990s. Ozone chemistry is very sensitive to temperature changes. Since temperatures in the Arctic stratosphere often come within a few degrees of the threshold for forming polar stratospheric clouds, further cooling of the stratosphere could cause these clouds to form more frequently and increase the severity of ozone losses. The Arctic may be changing in another way that differs from the Antarctic. With stratospheric cooling, the differences in temperature between the stratosphere and the troposphere are increasing. Differences in temperature creates winds, so stratospheric wind speeds have been increasing. (The Antarctic isn’t affected by increasing greenhouse gases like the Arctic is because it’s colder, and the polar wind circulation over the Antarctic is already very strong.) Drew Shindell says that from both observations and models, he has found increasing wind speeds not only at high altitudes but also near the surface. “That’s a large effect on climate,” he points out. “Changes in stratospheric ozone and winds affect the flow of energy at altitudes just below, which then affect the next lower altitudes, and so on all the way to the ground. That would be the most intriguing aspect of all this, though it’s still controversial.” |
These coastal mountains in southeast Alaska are representative of the rugged terrain of the Northern Hemisphere’s high latitudes. High mountains and the contrast between large continental landmasses and open ocean in the Northern Hemisphere disturb the air over the Arctic, preventing the formation of a stable circulation pattern. In part, it is the lack of a stable “polar vortex” that prevents the Arctic from experiencing the extremely cold temperatures and dramatic ozone loss seen above Antarctica. In spite of this, large ozone losses occurred in the Arctic during the last several years. (Photograph courtesy NOAA Photo Library) | ||
Ozone and Climate at the Surface | |||
Interactions between ozone and climate naturally occur not only in the stratosphere, but also at the Earth’s surface (troposphere). There are known chemical and physical aspects of ozone formation we can watch carefully as climate changes. Ozone forms in the troposphere by the action of sunlight on certain chemicals (photochemistry). Chemicals participating in ozone formation include two groups of compounds: nitrogen oxides (NOx) and volatile organic compounds (VOCs). In general, an increase in temperature accelerates photochemical reaction rates. Scientists find a strong correlation between higher ozone levels and warmer days. With higher temperatures, we can expect a larger number of “bad ozone” days, when exercising regularly outdoors harms the lungs. However, ozone levels do not always increase with increases in temperature, such as when the ratio of VOCs to NOx is low. As the troposphere warms on a global scale, we can expect changes in ozone air quality. Generally speaking, warming temperatures will modify some but not all of the complex chemical reactions involved in ozone production in the troposphere (such as those involving methane). Because of the short-lived nature of these chemical constituents and variations across space and time, the uncertainty is too large to make predictions. Scientists can only speculate about specific kinds of change, about the direction of change in a particular location, or about the magnitude of change in ozone amounts that they can attribute to climate. Some speculation involves VOC emissions from natural biological processes. Certain kinds of plants such as oak, citrus, cottonwood, and almost all fast-growing agriforest species emit significant quantities of VOCs. Higher temperatures of a warming climate encourage more plant growth, and therefore higher levels of VOCs in areas where VOC-emitting plants grow abundantly. Soil microbes also produce NOx. Soil microbial activity may also increase with warmer temperatures, leading to an increase in NOx emissions and a consequent increase in ozone amounts. |
|||
Another impact of climate on ozone pollution in the troposphere arises from the probability that higher temperatures will lead to greater demand for air conditioning and greater demand for electricity in summer. Most of our electric power plants emit NOx. As energy demand and production rises, we can expect amounts of NOx emissions to increase, and consequently levels of ozone pollution to rise as well. Water vapor is also involved in climate change. A warmer atmosphere holds more water vapor, and more water vapor increases the potential for greater ozone formation. But more cloud cover, especially in the morning hours, could diminish reaction rates and thus lower rates of ozone formation. Understanding the interactions between ozone and climate change, and predicting the consequences of change requires enormous computing power, reliable observations, and robust diagnostic abilities. The science community’s capabilities have evolved rapidly over the last decades, yet some fundamental mechanisms at work in the atmosphere are still not clear. The success of future research depends on an integrated strategy, with more interactions between scientists’ observations and mathematical models.
|
A warming climate can lead to more water vapor in the lower atmosphere, which would tend to produce more ozone. But cloud cover can also diminish chemical reaction rates because of reduced sunlight and therefore lower rates of ozone formation. Monitoring and analyzing such interactions is the best way we can improve our predictive capabilities. (Photograph courtesy Jeannie Allen, NASA GSFC/SSAI) | ||


